Supported by DOE 11/22/2011 QGP viscosity at RHIC and LHC energies 1 Huichao Song 宋慧超 Seminar at the Interdisciplinary Center for Theoretical Study, USTC.

Slides:



Advertisements
Similar presentations
QGP Viscosity & Elliptic Flow for Multi-strange Hadrons
Advertisements

Huichao Song The Ohio State University Lawrence Berkeley National Lab Viscous Hydro +URQMD In collaboration with S.Bass, U.Heinz, C.Shen, P.Huovinen &
Mass, Quark-number, Energy Dependence of v 2 and v 4 in Relativistic Nucleus- Nucleus Collisions Yan Lu University of Science and Technology of China Many.
New Results from Viscous Hydro + URQMD (VISHNU) International School for High Energy Nuclear Collisions, Wuhan, Oct 31- Nov.5, 2011 References: Supported.
TJH: ISMD 2005, 8/9-15 Kromeriz, Czech Republic TJH: 1 Experimental Results at RHIC T. Hallman Brookhaven National Laboratory ISMD Kromeriz, Czech Republic.
Effects of Bulk Viscosity on p T -Spectra and Elliptic Flow Parameter Akihiko Monnai Department of Physics, The University of Tokyo, Japan Collaborator:
The Phase Diagram of Nuclear Matter Oumarou Njoya.
Forward-Backward Correlations in Relativistic Heavy Ion Collisions Aaron Swindell, Morehouse College REU 2006: Cyclotron Institute, Texas A&M University.
The speed of sound in a magnetized hot Quark-Gluon-Plasma Based on: Neda Sadooghi Department of Physics Sharif University of Technology Tehran-Iran.
1 Questions about sQGP Carlos Arguello Columbia University 24 th Winter Workshop on Nuclear Dynamics April 10 th 2008.
Forward-Backward Correlations in Heavy Ion Collisions Aaron Swindell, Morehouse College REU Cyclotron 2006, Texas A&M University Advisor: Dr. Che-Ming.
200 GeV Au+Au Collisions, RHIC at BNL Animation by Jeffery Mitchell.
Roy A. Lacey, Stony Brook; 24 th Winter Workshop on Nuclear Dynamics, April 5-12, Roy A. Lacey Prospects for locating the QCD Critical End Point.
Properties of the Quantum Fluid at RHIC Strangeness in Quark Matter March 26-31, 2006.
Exploring Hot Dense Matter at RHIC and LHC Peter Jacobs Lawrence Berkeley National Laboratory Lecture 3: Collective Flow and Hydrodynamics 6/22/111Hot.
Effects of Bulk Viscosity at Freezeout Akihiko Monnai Department of Physics, The University of Tokyo Collaborator: Tetsufumi Hirano Nagoya Mini-Workshop.
Generalized Entropy and Transport Coefficients of Hadronic Matter Azwinndini Muronga 1,2 1 Centre for Theoretical Physics & Astrophysics Department of.
Viscous hydrodynamics DPF 2009 Huichao Song The Ohio State University Supported by DOE 07/30/2009 July 27-July 31, Detroit, MI with shear and bulk viscosity.
Viscous hydrodynamics and Transport Models Azwinndini Muronga 1,2 1 Centre for Theoretical Physics and Astrophysics Department of Physics, University of.
Christina Markert Physics Workshop UT Austin November Christina Markert The ‘Little Bang in the Laboratory’ – Accelorator Physics. Big Bang Quarks.
New States of Matter and RHIC Outstanding questions about strongly interacting matter: How does matter behave at very high temperature and/or density?
1 The Quark Gluon Plasma and the Perfect Fluid Quantifying Degrees of Perfection Jamie Nagle University of Colorado, Boulder.
Discovery of the Higgs Boson Gavin Lawes Department of Physics and Astronomy.
Nonequilibrium Dynamics in Astrophysics and Material Science YITP, Kyoto, Japan, Oct. 31-Nov. 3, 2011 Tetsufumi Hirano Sophia Univ./the Univ. of Tokyo.
Relativistic Heavy Ion Physics: the State of the Art.
Perfect Fluid: flow measurements are described by ideal hydro Problem: all fluids have some viscosity -- can we measure it? I. Radial flow fluctuations:
Strongly Interacting Low Viscosity Matter Created in Heavy Ion Collisions Joe Kapusta * University of Minnesota Quark Matter 2006, Shanghai, China * Original.
Akihiko Monnai Department of Physics, The University of Tokyo Collaborator: Tetsufumi Hirano Viscous Hydrodynamics for Relativistic Systems with Multi-Components.
Workshop for Particle Correlations and Femtoscopy 2011
November 18, Shanghai Anomalous Viscosity of an Expanding Quark-Gluon Plasma Masayuki ASAKAWA Department of Physics, Osaka University S. A.
Axel Drees, Stony Brook University, Lectures at Trento June 16-20, 2008 Electromagnetic Radiation form High Energy Heavy Ion Collisions I.Lecture:Study.
Akihiko Monnai Department of Physics, The University of Tokyo Collaborator: Tetsufumi Hirano Viscous Hydrodynamics Heavy Ion Meeting December 10.
High Energy Nuclear Physics and the Nature of Matter Outstanding questions about strongly interacting matter: How does matter behave at very high temperature.
Future Perspectives on Theory at RBRC Color Glass Condensate: predictions for: "ridge", elliptical flow.... Quark-Gluon Plasma: fluctuations, effects of.
Akihiko Monnai Department of Physics, The University of Tokyo Collaborator: Tetsufumi Hirano V iscous Hydrodynamic Expansion of the Quark- Gluon Plasma.
Viscous hydrodynamics Quark Matter 2009 Huichao Song and Ulrich Heinz The Ohio State University Supported by DOE 04/02/2009 March 30-April 4, Knoxville,
Joint CATHIE/TECHQM Workshop, BNL, Dec 14-18, 2009 Huichao Song The Ohio State University Supported by DOE 12/14/2009 Lawrence Berkeley National Lab QGP.
Effects of bulk viscosity in causal viscous hydrodynamics Jianwei Li, Yugang Ma and Guoliang Ma Shanghai Institute of Applied Physics, CAS 1. Motivation.
Ultra-relativistic heavy ion collisions Theoretical overview ICPAQGP5, KOLKATA February 8, 2005 Jean-Paul Blaizot, CNRS and ECT*
1 QCD Thermodynamics at High Temperature Peter Petreczky Large Scale Computing and Storage Requirements for Nuclear Physics (NP), Bethesda MD, April 29-30,
Flow fluctuation and event plane correlation from E-by-E Hydrodynamics and Transport Model Victor Roy Central China Normal University, Wuhan, China Collaborators.
The R.H.I.C. Transport Challenge
Quark-Gluon Plasma Sijbo-Jan Holtman.
Physics of Dense Matter in Heavy-ion Collisions at J-PARC Masakiyo Kitazawa J-PARC 研究会、 2015/8/5 、 J-PARC.
Steffen A. BassModeling of RHIC Collisions #1 Steffen A. Bass Duke University Relativistic Fluid Dynamics Hybrid Macro+Micro Transport flavor dependent.
U N C L A S S I F I E D Operated by the Los Alamos National Security, LLC for the DOE/NNSA Slide 0 Study of the Quark Gluon Plasma with Hadronic Jets What:
Akihiko Monnai Department of Physics, The University of Tokyo Collaborator: Tetsufumi Hirano Relativistic Viscous Hydrodynamics for Multi-Component Systems.
Shear and Bulk Viscosities of Hot Dense Matter Joe Kapusta University of Minnesota New Results from LHC and RHIC, INT, 25 May 2010.
Heavy-Ion Physics - Hydrodynamic Approach Introduction Hydrodynamic aspect Observables explained Recombination model Summary 전남대 이강석 HIM
Relativistic Theory of Hydrodynamic Fluctuations Joe Kapusta University of Minnesota Nuclear Physics Seminar October 21, 2011 Collaborators: Berndt Muller.
HIM06-12 SHLee1 Some Topics in Relativistic Heavy Ion Collision Su Houng Lee Yonsei Univ., Korea 1.J. P. Blaizot 2.J. Kapusta 3.U. A. Wiedemann.
Energy and  B dependence in heavy ion collisions D. Kharzeev BNL “From high  B to high energy”, BNL, June 5, 2006.
PhD student at the International PhD Studies Institute of Nuclear Physics PAN Institute of Nuclear Physics PAN Department of Theory of Structure of Matter.
Flow and Dissipation in Ultrarelativistic Heavy Ion Collisions September 16 th 2009, ECT* Italy Akihiko Monnai Department of Physics, The University of.
3 rd Joint Meeting of the Nuclear Physics Divisions of the APS and the JPS October 15 th 2009, Hawaii USA Akihiko Monnai Department of Physics, The University.
What have we learned from the RHIC experiments so far ? Berndt Mueller (Duke University) KPS Meeting Seoul, 22 April 2005.
Axel Drees, University Stony Brook, PHY 551 S2003 Heavy Ion Physics at Collider Energies I.Introduction to heavy ion physics II.Experimental approach and.
Akihiko Monnai Department of Physics, The University of Tokyo Collaborator: Tetsufumi Hirano V iscous Hydrodynamic Evolution with Non-Boost Invariant Flow.
Elliptic flow from initial states of fast nuclei. A.B. Kaidalov ITEP, Moscow (based on papers with K.Boreskov and O.Kancheli) K.Boreskov and O.Kancheli)
Towards understanding the Quark-Gluon Plasma
Review of ALICE Experiments
Raju Venugopalan Brookhaven National Laboratory
Hydro + Cascade Model at RHIC
Workshop on the physics of HL-LHC, and perspectives at HE-LHC
Properties of the Quark-Gluon Plasma
برخورد یون های سنگین در LHC همایش یک روزه فیزیک LHCبا تاکید بر هیگز
Effects of Bulk Viscosity at Freezeout
Introduction of Heavy Ion Physics at RHIC
HIGH ENERGY NUCLEAR PHYSICS (Relativistic heavy ion collisions)
Relativistic heavy ion collisions
Presentation transcript:

Supported by DOE 11/22/2011 QGP viscosity at RHIC and LHC energies 1 Huichao Song 宋慧超 Seminar at the Interdisciplinary Center for Theoretical Study, USTC

2 QGP (quark gluon plasma): deconfinement phase of QCD matter Quark and Gluons: confined in proton and neutrons through strong forces described by QCD EOS (lattice QCD)

3 QCD Phase diagram Water: Phase diagram

4 little bang: the different stage for a relativistic heavy ion collisions big bang: the very early history of the universe QGP atom nuclei Hadrons S.Bass QGP Hadron Gas

A brief history of relativistic heavy ion physics 5 We should investigate.... phenomena by distributing energy of high nucleon density of a relatively large volume” ---T.D.Lee 1974: Workshop on “BeV/nucleon collisions of heavy ions” 1984: SPS starts, (end 2003) 1986: AGS stars, (end 2000) 2000: RHIC starts 2010: LHC starts Future: FAIR & NICA

The QGP was discovered 6 RHIC ( )

Future science at the relativistic heavy ion collider 7 -What is the mechanism of the unexpectedly fast thermal equilibrium? -What is the initial temperature and thermal evolution of the produced matter? -What is the energy density and equation of state of the medium? -What is the viscosity of the produced matter? -Is there direct evidence for deconfinement, color screening, and a partonic nature of the hot dense medium? What is the screening length? -Is the chiral symmetry restored by QCD? -How does the new form of matter hadronize at the phase transition? --The frontiers of nuclear science, a long range plan the next phase … will focus on detailed investigations of the QGP, “both to quantify its properties and to understand precisely how they emerge from the fundamental properties of QCD”

8 The fluid nature of the QGP & its viscosity shear viscositybulk viscosity

Lower bound for from quantum mechanics uncertainty principle: the ability of momentum transfer y u F Quantum mechanics excludes the possibility of an absolutely ideal fluid: Example: shear viscosity of a dilute gas Shear viscosity - classical definition: Shear viscosity - microscopic view:

The QGP shear viscosity -Weakly coupled QCD prediction : P.Arnold,G.Moore,&Y.Yaffe, 00,03 -Strongly coupled AdS/CFT prediction: AdS/CFT correspondence: gauge/gravity duality 4d gauge theory at strong coupling 5d gravity at weak coupling N=4 SYMType IIB superstring theory on D.T. Son, et,al. 05 (not related to real QCD) Kubo formula: Kinetic theory: To extract the QGP viscosity from experimental data, we need viscous hydrodynamics

Ideal hydrodynamics S.Bass Conservation laws: ideal hydro: local equilibrium Input: “EOS” - 4 equations - 5 unknowns

Viscous hydrodynamics S.Bass Conservation laws: viscous hydro: near equilibrium shear pressure tensor bulk pressure: ideal hydro: local equilibrium

Viscous hydrodynamics S.Bass Conservation laws: - Israel-Stewart eqns.

Viscous hydrodynamics S.Bass Conservation laws: - Israel-Stewart eqns. Input: “EOS”initial and final conditions Bjorken appro. : reduces (3+1)-d hydro to (2+1)-d hydro

Viscous hydro: Shear viscosity & elliptic flow V % v 2 suppression Elliptic flow v 2 - V 2 can be used to extract the QGP shear viscosity H. Song and U. Heinz, PRC08 15

- V 2 can be used to extract the QGP shear viscosity 20-25% v 2 suppression Elliptic flow v 2 Shear viscosity & elliptic flow V 2 -For an acurrate extraction of QGP viscosity, one needs very precise V 2 (experimental data & theoretical results)

- V 2 can be used to extract the QGP shear viscosity 20-25% v 2 suppression - 10% uncertainties in V 2 translate into 50% uncertainties for the extracted value of Elliptic flow v 2 Example: If v 2 is increased by 10%, one need to increase by in order to describe the same exp. data Shear viscosity & elliptic flow V 2 -For an acurrate extraction of QGP viscosity, one needs very precise V 2 (experimental data & theoretical results)

~30% Partially Chemical equil. Ideal hydro P. Huovinen 07 Hadronic effects on elliptic flow V 2 hadronic dissipative effects ~30-50% -These two HRG effects are not included in early viscous hydro calculations T. Hirano 06 viscous hydro + hadron cascade (URQMD) hybrid approach URQMD includes the partially chemical equilibrium nature & hadronic dissipative effects 18

Initial conditions viscous hydro hadron cascade Initial conditions viscous hydro final conditions QGP Hadron Gas QGP Hadron Gas

STAR DATA ~20% uncertainties in EXP V 2 ~100% uncertainties for the extracted QGP viscosity V 2 from different exp methods are affected by non-flow and fluctuations ~20% Extracting QGP viscosity from RHIC data EXP. 20

Ollitrault, Poskanzer & Voloshin, PRC09 Corrected v2: with assumptions on fluctuations and non flow, all corrected v2 in participant / reaction plan converge to unique curves greatly reduces uncertainties from EXP data for the extracted Corrected V 2 Extracting QGP viscosity from RHIC data EXP. 21

-initial conditions -EoS: s95p-PCE Huovinen & Petreczky10 -chemical composition of HRG -viscosity of HRG -bulk viscosity: <20% Viscous Hydro + URQMD Extracting QGP viscosity from RHIC data Song & Heinz, PRC 09 Theoretical Modeling 22 Song, Bass & Heinz, PRC2011 -initial conditions

QGP viscosity from for MC-KLN initial conditions for MC-Glauber initial conditions MC-KLNMC-Glauber (Part. Plan) 23 H. Song, S. Bass, U. Heinz, T. Hirano, and C. Shen, PRL2011

-a nice fit for both pion and proton spectra, insensitive to QGP viscosity H. Song, S. Bass, U. Heinz, T. Hirano, and C. Shen,PRC

for KLN initial condi.for Glauber initial condi. -hit the lower-bound of extracted from (non flow effects) -fluctuating effects is reduced by comparing theory & EXP. 5-10% 20-30% 30-40% 40-50% 5-10% 20-30% 30-40% 40-50% 20-30% 30-40% 40-50% 20-30% 30-40% 40-50% Glauber KLN H.Song, S. Bass, U. Heinz, T. Hirano, and C. Shen, PRC

QGP viscosity at RHIC & LHC energies H. Song, S. Bass, U. Heinz, PRC2011

V 2 (P T ) at RHIC and LHC Assuming const. This is not aim for extracting QGP viscosity at LHC energy with reliable uncertainty estimates RHIC: LHC: 27 Song, Bass & Heinz, PRC 2011

-- past, current and future QGP viscosity from RHIC data 28

Viscous Hydrodynamics Modeling -- a brief history 29 Causal Viscous hydrodynamics: I-S formulism Viscous hydrodynamics in 1+1, 2+1 & 3+1-d for RHIC physics Numerical Simulations and implication to RHIC Viscous hydro + hadron cascade hybrid model Extracting QGP viscosity from RHIC data H. Song and U. Heinz, Phys. Lett. B 658, 279 (2008) ; Phys. Rev.C77, (2008) P. Romatschke and U. Romatschke, Phys. Rev. Lett. 99, (2007). K. Dusling and D. Teaney, Phys. Rev. C 77, (2008) D. Molnar and P. Huovinen, J. Phys. G 35, (2008). H. Song, S. Bass and U. Heinz, Phys. Rev. C83, (2011) M.Luzum and P. Romatschke, Phys. Rev. C78, (2008). H.Song, S. Bass, U. Heinz, T. Hirano and C. Shen, Phys. Rev. Lett. 106, (2011). H. Song, S. Bass, U. Heinz, T. Hirano and C. Shen, Phys. Rev. C83, (2011). A.Muronga, Phys. Rev. Lett. 88, (2002); Phys. Rev.C 69, (2004). U. Heinz, H. Song and A. K. Chaudhuri, Phys. Rev. C73, (2006). W. Israel and J. M. Stewart, Ann. Phys. (N.Y.) ibid. 118, 341 (1979).

Viscous hydro & QGP viscosity (2008) -initial conditions: CGC vs. Glauber ~100% -EoS: ?% -chemical composition of HRG : ?% -viscosity of HRG : ?% -bulk viscosity: ?% (uncertainties in ) GlauberCGC viscous hydro Luzum & Romatschke, PRC

Viscous hydro & QGP viscosity (2008) -initial conditions: CGC vs. Glauber ~100% -EoS: EOS Q, vs. EOS L ~ 25% -chemical composition of HRG : (PCE vs. CE) ~100% -viscosity of HRG (or equil. HRG vs. non-equil. HRG) : ~ % -bulk viscosity: ?% (uncertainties in ) GlauberCGC viscous hydro Luzum & Romatschke, PRC

-initial conditions -EoS: s95p-PCE (Huovinen & Petreczky 10) -chemical composition of HRG -dissipative effects of HRG -bulk viscosity: <20% Song & Heinz, PRC 09 viscous hydro + URQMD & QGP viscosity (2010) viscous hydro + URQMD This field is experiencing fast development ! 32 Song, Bass, Heinz, PRC2011

-initial conditions -EoS: s95p-PCE (Huovinen & Petreczky 10) -chemical composition of HRG -dissipative effects of HRG -bulk viscosity: <20% Song & Heinz, PRC 09 viscous hydro + URQMD & QGP viscosity (2010) viscous hydro + URQMD elliptic flow data Corrected integrated V 2 in participant (reaction) plan for theoretical comparison Ollitrault, Poskanzer & Voloshin, 09 -non-flow & fluctuations : This field is experiencing fast development ! 33 Song, Bass, Heinz, PRC2011

-initial conditions -EoS: s95p-PCE (Huovinen & Petreczky 10) -chemical composition of HRG -dissipative effects of HRG -bulk viscosity: <20% Song & Heinz, PRC 09 viscous hydro + URQMD viscous hydro + URQMD & QGP viscosity (2010) MC-KLNMC-Glauber viscous hydro + URQMD elliptic flow data Corrected integrated V2 in participant (reaction) plan for theoretical comparision Ollitrault, Poskanzer & Voloshin, 09 -non-flow & fluctuations : 34 Song, Bass, Heinz, PRC2011

The near future -uncertainties from Glauber and KLN initialization: -- need other probe or tools to pin down the initial conditions -uncertainties from initial flow, bulk viscosity, e-b-e hydro: -- extract QGP viscosity from more observables: More precise QGP viscosity 1) uncertainties from exp data? 2) may sensitive to other hydro inputs MC-KLNMC-Glauber 35

HBT V2V2 Spectra Other free inputs in the hybrid model Photons 36

HBT radii - is sensitive to the QGP viscosity - HBT HELPS to constrain the QGP viscosity, together with other observables ( V 2 …) S. Pratt QM09 with viscosity without viscosity - However, viscosity is only one of the many ingredients that affect HBT radii (Pratt QM09) 37

EM probes: Photons Pion spectra -Viscous hardening of P T -spectra is stronger for photons than hadrons K. Dusling, 0903 Photon spectra -Photon spectra MAY HELP to constrain the 2-d range of QGP viscosity & thermalization time, together with other observables ( V 2 …) -However, earlier thermalization also leads to harder photon spectra (Dusling 0903) 38

Triangular flow & QGP viscosity -triangular flow is sensitive to QGP shear viscosity -triangular flow can help us to eliminate the uncertainties from KLN and Glauber Zhi & Heinz, preliminary results MC-KLN MC-Glauber 39

A short summary - is sensitive to Extraction from elliptic flow data using viscous hydro + UrQMD indicates: -Relatively smaller uncertainties are from -other possible observables may help to reduce these uncertainties, initial flow, bulk viscosity, single short hydro vs. e-by-e simulations … photons, HBT radii, triangular flow … -Relatively larger uncertainties are from initial geometry MC-Glauber: MC-KLN: 40

Thank You 41

e-b-e hydro vs. single shot hydro Event-by-event hydro produces 5% less v2/ecc than single- shot hydro with smooth averaged initial profile Zhi & Heinz, preliminary results 42 for MC-KLN initial conditions for MC-Glauber initial conditions initial flow, bulk viscosity and e-b-e hydro: cancelation among them each of them shifts v 2 by a few percent