Scientific Computing Lab Results Worksheet 2 Dr. Miriam Mehl Institut für Informatik Scientific Computing in Computer Science.

Slides:



Advertisements
Similar presentations
Números.
Advertisements

Reflection nurulquran.com.
Worksheets.
Lab Course CFD Preliminay Discussion Dr. Miriam Mehl Institut für Informatik Schwerpunkt Wissenschaftliches Rechnen.
Practical Course SC & V Free Boundary Value Problems Dr. Miriam Mehl Institut für Informatik Scientific Computing in Computer Science.
CSE Seminar Benefits of Hierarchy and Adaptivity Preliminary Discussion Dr. Michael Bader / Dr. Miriam Mehl Institut für Informatik Scientific Computing.
Practical Course SC & V More on Boundaries Dr. Miriam Mehl Institut für Informatik Schwerpunkt Wissenschaftliches Rechnen.
Institut für Informatik Scientific Computing in Computer Science Practical Course SC & V Time Discretisation Dr. Miriam Mehl.
& dding ubtracting ractions.
Addition and Subtraction Equations
Multiplication X 1 1 x 1 = 1 2 x 1 = 2 3 x 1 = 3 4 x 1 = 4 5 x 1 = 5 6 x 1 = 6 7 x 1 = 7 8 x 1 = 8 9 x 1 = 9 10 x 1 = x 1 = x 1 = 12 X 2 1.
Division ÷ 1 1 ÷ 1 = 1 2 ÷ 1 = 2 3 ÷ 1 = 3 4 ÷ 1 = 4 5 ÷ 1 = 5 6 ÷ 1 = 6 7 ÷ 1 = 7 8 ÷ 1 = 8 9 ÷ 1 = 9 10 ÷ 1 = ÷ 1 = ÷ 1 = 12 ÷ 2 2 ÷ 2 =
We need a common denominator to add these fractions.
CALENDAR.
Multiplication Facts Review. 6 x 4 = 24 5 x 5 = 25.
Around the World AdditionSubtraction MultiplicationDivision AdditionSubtraction MultiplicationDivision.
Numerical Solution for Initial Value Problem Numerical Analysis.
Division- the bus stop method
MM4A6c: Apply the law of sines and the law of cosines.
Look at This PowerPoint for help on you times tables
Area under curves Consider the curve y = f(x) for x  [a, b] The actual area under the curve is units 2 The approximate area is the sum of areas.
PSAE CLICKER REVIEW On your scratch paper, work out each question. When you have an answer, enter that letter on your clicker. When time is called the.
4.5 Solve Quadratic Equations by Finding Square Roots
Before Between After.
Foundation Stage Results CLL (6 or above) 79% 73.5%79.4%86.5% M (6 or above) 91%99%97%99% PSE (6 or above) 96%84%100%91.2%97.3% CLL.
Subtraction: Adding UP
Static Equilibrium; Elasticity and Fracture
Converting a Fraction to %
& dding ubtracting ractions.
Graeme Henchel Multiples Graeme Henchel
úkol = A 77 B 72 C 67 D = A 77 B 72 C 67 D 79.
Scientific Computing Lab Results Worksheet 3 Dr. Miriam Mehl Institut für Informatik Scientific Computing in Computer Science.
Scientific Computing Lab Organization Dr. Miriam Mehl Institut für Informatik Scientific Computing in Computer Science.
Introduction to Scientific Computing II Molecular Dynamics – Introduction Dr. Miriam Mehl Institut für Informatik Scientific Computing In Computer Science.
Integration of 3-body encounter. Figure taken from
Scientific Computing Multi-Step and Predictor-Corrector Methods.
Introduction to Scientific Computing II Multigrid Dr. Miriam Mehl Institut für Informatik Scientific Computing In Computer Science.
Introduction to Scientific Computing II Multigrid Dr. Miriam Mehl.
Introduction to Scientific Computing II Molecular Dynamics – Algorithms Dr. Miriam Mehl Institut für Informatik Scientific Computing In Computer Science.
Scientific Computing Lab Outlook / State of Research Dr. Miriam Mehl Institut für Informatik Scientific Computing in Computer Science.
Scientific Computing Lab Results Worksheet 4 Dr. Miriam Mehl Institut für Informatik Scientific Computing in Computer Science.
Scientific Computing Lab Organization Dr. Miriam Mehl Institut für Informatik Scientific Computing in Computer Science.
CISE301_Topic8L71 CISE301: Numerical Methods Topic 8 Ordinary Differential Equations (ODEs) Lecture KFUPM (Term 101) Section 04 Read , 26-2,
Scientific Computing Lab
Scientific Computing Lab
Local Linearity and Approximation
Scientific Computing Lab
Introduction to Scientific Computing II
Introduction to Scientific Computing II
Chapter 26.
Introduction to Scientific Computing II
Practical Course SC & V Discretization II AVS Dr. Miriam Mehl
Introduction to Scientific Computing II
Introduction to Scientific Computing II
Introduction to Scientific Computing II
Introduction to Scientific Computing II
Introduction to Scientific Computing II
Introduction to Scientific Computing II
Scientific Computing Lab
ECE 576 POWER SYSTEM DYNAMICS AND STABILITY
Scientific Computing Lab
Linearization and Newton’s Method
ECE 576 POWER SYSTEM DYNAMICS AND STABILITY
Introduction to Scientific Computing II
Linearization and Newton’s Method
Introduction to Scientific Computing II
Introduction to Scientific Computing II
Scientific Computing Lab
Spatial Discretisation
Presentation transcript:

Scientific Computing Lab Results Worksheet 2 Dr. Miriam Mehl Institut für Informatik Scientific Computing in Computer Science

Worksheet 2 – Solution

1) m-file Euler_implicit.m for (k=2:size(tk,2)) y_it = y(k-1); dy=1.0; %Newton iteration while (abs(dy)>=0.0001) dy = (y(k-1) - y_it + dt*rhs(y_it))/ (dt*rhs_y(y_it)-1); y_it = y_it - dy; end y(k)=y_it; end

Worksheet 2 – Solution 2) m-file Adams_Moulton.m y_it = y(k-1); x = y_it + (1/2)*dt*rhs(y_it); %Newton iteration d=1-7*dt+(49/4)*dt^2+(7/5)*dt*x; if (d>0) dy=1; it=1; while (abs(dy)>0.0001) …

Worksheet 2 – Solution 3) m-file AdamsMoulton_linear_1.m for (k=2:size(tk,2)) a=(1/2)*dt*7*y(k-1); y(k)=(y(k-1)+2*a-(a/10)*y(k-1))/ (1+(a/10)); end

Worksheet 2 – Solution

dt1/21/41/81/161/32 error–– error red.––– explicit Euler q=1

Worksheet 2 – Solution dt1/21/41/81/161/32 error–– error red.––– Heun q=2

Worksheet 2 – Solution dt1/21/41/81/161/32 error error red.– implicit Euler q=1

Worksheet 2 – Solution dt1/21/41/81/161/32 error– error red.–– Adams Moulton q=2

Worksheet 2 – Solution dt1/21/41/81/161/32 error error red.– Adams Moulton linearisation 1 q=1

Worksheet 2 – Solution dt1/21/41/81/161/32 error error red.– Adams Moulton linearisation 2 q=1

Worksheet 2 – Solution dtExpl. Euler HeunImpl. Euler Adams Moulton Adams Moulton l1 Adams Moulton l2 1/2X–XO 1/4XXXX 1/8XXXXXX 1/16XXXXXX 1/32XXXXXX