Dana.A.Al Shammari: Name Qualification: Master physics Solids state: Department بسم الله الرحمن الرحيم
Find the spring constant of a spiral spring Achieving Hooke’s law
A spring constant is the measure of the stiffness of a spring
If a mass m is attached to the lower end of the spring,the spring stretches a distance of d from its is initial position under the influence of the weight W=mg w:weight(N) m:mass(kg) g: Accelration of (gravity(m/s 2 W=mg w:weight(N) m:mass(kg) g: Accelration of (gravity(m/s 2
2-The upward restoring force F(r)
In the case of the blance
m X 0=…………cm, X 0 d=∆X=X-X 0 Elongation(m) Distance X(m) Distance X(cm) F(w)=mg (N) Mass (kgm) Mass (gm) ∑ ∆X/n=…… ∑ F/n=……
∆X(m) F(w) (N) Slope (F(w2), ∆X2) (F(w1), ∆X1) 1- Slope=k= k exp k= K thor
k exp & k thot
Dana.A.Al Shammari: Name Qualification: Master physics Solids state: Department بسم الله الرحمن الرحيم
To find the resultant force by analytically and experimentally (force table)
A vector is a quantity that possesses both magnitude and direction; examples 1- Velocity (V) 2- Acceleration (a) 3- Force (F)
In case one vector Each force is resolved into X,Y components:
In case one vector Find the resultant
In case mor vectors Find the resultant F X = ∑ F x =F 1 X+F 2 X F Y =∑F Y =F 1 Y+F 2 Y F1 F2 F2 Cosθ
αβɣF3(N) M1g F2(N) M1g F1(N) M1g M3 (Kg) M2 (Kg) M1 (Kg) No F1,F2=ɣ F2,F3=β F3,F1=α
F1x= F1 Cosθ1 = Cos 0 = 0.686N F1y=F1 Sinθ1 = Sin 0 = 0 F2x=F2 Cosθ2 = 0.98 Cos 80= 0.17N F2Y= F2 Sin 80 = 0.98 Sin 80= 0.965N Fx Fy ∑Fx=F1x + F2x = = N ∑Fy=F1y + F2y = = N Magnitude=F3 = R == =1.28 N
F1 F2 ɣ =80 θ=48.4 β=148.4 α =131.6 Y X F1,F2=ɣ F2,F3=β F3,F1=α -F3 F3
THEROTICAILEXPERMENTLY F3=1.28 NF3=1.32N ɣ =80 β = 148.4β = 150 α = α = 130