CS2100 Computer Organisation

Slides:



Advertisements
Similar presentations
Boolean Algebra and Logic Gates
Advertisements

CS2100 Computer Organisation
Introduction to Logic Circuits
Lecture 5 EGRE 254 1/28/09. 2 Boolean algebra a.k.a. “switching algebra” –deals with Boolean values -- 0, 1 Positive-logic convention –analog voltages.
Logical Systems Synthesis.
Chapter 2 Logic Circuits.
CS 151 Digital Systems Design Lecture 6 More Boolean Algebra A B.
1 COMP541 Combinational Logic Montek Singh Jan 16, 2007.
EECC341 - Shaaban #1 Lec # 5 Winter Switching Algebra: Principle of Duality Any theorem or identity in switching algebra remains true if.
1 Section 10.1 Boolean Functions. 2 Computers & Boolean Algebra Circuits in computers have inputs whose values are either 0 or 1 Mathematician George.
MOHD. YAMANI IDRIS/ NOORZAILY MOHAMED NOOR
CS1104: Computer Organisation Lecture 3: Boolean Algebra
CS 300 – Lecture 3 Intro to Computer Architecture / Assembly Language Digital Design.
Chapter 2: Boolean Algebra and Logic Functions
Boolean Algebra Computer Organization 1 © McQuain Boolean Algebra A Boolean algebra is a set B of values together with: -two binary operations,
CHAPTER 2 Boolean Algebra
Logic Design CS221 1 st Term Boolean Algebra Cairo University Faculty of Computers and Information.
CS1104: Computer Organisation School of Computing National University of Singapore.
Boolean Algebra – I. Outline  Introduction  Digital circuits  Boolean Algebra  Two-Valued Boolean Algebra  Boolean Algebra Postulates  Precedence.
BOOLEAN ALGEBRA Saras M. Srivastava PGT (Computer Science)
Combinational Logic 1.
Module 4.  Boolean Algebra is used to simplify the design of digital logic circuits.  The design simplification are based on: Postulates of Boolean.
CPS3340 COMPUTER ARCHITECTURE Fall Semester, /05/2013 Lecture 4: Basics of Logic Design Instructor: Ashraf Yaseen DEPARTMENT OF MATH & COMPUTER.
Lecture 22: 11/19/2002CS170 Fall CS170 Computer Organization and Architecture I Ayman Abdel-Hamid Department of Computer Science Old Dominion University.
ECE 2110: Introduction to Digital Systems PoS minimization Don’t care conditions.
LOGIC GATES & BOOLEAN ALGEBRA
1 Boolean Algebra  Digital circuits Digital circuits  Boolean Algebra Boolean Algebra  Two-Valued Boolean Algebra Two-Valued Boolean Algebra  Boolean.
1 BOOLEAN ALGEBRA Basic mathematics for the study of logic design is Boolean Algebra Basic laws of Boolean Algebra will be implemented as switching devices.
Discrete Mathematics CS 2610 September Equal Boolean Functions Two Boolean functions F and G of degree n are equal iff for all (x 1,..x n )  B.
ENGIN112 L6: More Boolean Algebra September 15, 2003 ENGIN 112 Intro to Electrical and Computer Engineering Lecture 6 More Boolean Algebra A B.
Dale Roberts Department of Computer and Information Science, School of Science, IUPUI Dale Roberts, Lecturer Computer Science, IUPUI
Boolean Algebra – II. Outline  Basic Theorems of Boolean Algebra  Boolean Functions  Complement of Functions  Standard Forms.
CHAPTER 1 SETS, FUNCTIONs, ELEMENTARY LOGIC & BOOLEAN ALGEBRAs
A. Abhari CPS2131 Chapter 2: Boolean Algebra and Logic Gates Topics in this Chapter: Boolean Algebra Boolean Functions Boolean Function Simplification.
Lecture 4 Boolean Algebra. Logical Statements °A proposition that may or may not be true: Today is Monday Today is Sunday It is raining °Compound Statements.
1 Lect # 2 Boolean Algebra and Logic Gates Boolean algebra defines rules for manipulating symbolic binary logic expressions. –a symbolic binary logic expression.
Logic Circuits Lecture 3 By Amr Al-Awamry. Basic Definitions Binary Operators  AND z = x y = x yz=1 if x=1 AND y=1  OR z = x + y z=1 if x=1 OR y=1 
R. Johnsonbaugh Discrete Mathematics 5 th edition, 2001 Chapter 9 Boolean Algebras and Combinatorial Circuits.
Dale Roberts Department of Computer and Information Science, School of Science, IUPUI Dale Roberts, Lecturer Computer Science, IUPUI
ECEN 248: INTRODUCTION TO DIGITAL SYSTEMS DESIGN Lecture 4 Dr. Shi Dept. of Electrical and Computer Engineering.
CEC 220 Digital Circuit Design SOP and POS forms Friday, January 23 CEC 220 Digital Circuit Design Slide 1 of 17.
ECE DIGITAL LOGIC LECTURE 8: BOOLEAN FUNCTIONS Assistant Prof. Fareena Saqib Florida Institute of Technology Spring 2016, 02/11/2016.
ECE DIGITAL LOGIC LECTURE 6: BOOLEAN ALGEBRA Assistant Prof. Fareena Saqib Florida Institute of Technology Fall 2016, 02/01/2016.
CEC 220 Digital Circuit Design Boolean Algebra II Fri, Sept 4 CEC 220 Digital Circuit Design Slide 1 of 13.
COMPUTER ARCHITECTURE & OPERATIONS I Instructor: Yaohang Li.
Boolean Algebra. BOOLEAN ALGEBRA Formal logic: In formal logic, a statement (proposition) is a declarative sentence that is either true(1) or false (0).
Lecture 5 More Boolean Algebra A B. Overview °Expressing Boolean functions °Relationships between algebraic equations, symbols, and truth tables °Simplification.
CEC 220 Digital Circuit Design SOP and POS forms Friday, Sept 11 CEC 220 Digital Circuit Design Slide 1 of 17.
CSE 461. Binary Logic Binary logic consists of binary variables and logical operations. Variables are designated by letters such as A, B, C, x, y, z etc.
Boolean Algebra.
CHAPTER 2 Boolean algebra and Logic gates
Computer Architecture & Operations I
Computer Architecture & Operations I
CS2100 Computer Organisation
CS2100 Computer Organisation
Morgan Kaufmann Publishers
Unit 2 Boolean Algebra.
CS2100 Computer Organisation
ECE 20B, Winter 2003 Introduction to Electrical Engineering, II LECTURE NOTES #2 Instructor: Andrew B. Kahng (lecture)
CS 105 Digital Logic Design
CHAPTER 2 Boolean Algebra
CHAPTER 2 Boolean Algebra This chapter in the book includes:
Princess Sumaya University
SLIDES FOR CHAPTER 2 BOOLEAN ALGEBRA
FIGURES FOR CHAPTER 2 BOOLEAN ALGEBRA
Jeremy R. Johnson Wed. Sept. 29, 1999
Boolean Algebra.
Boolean Algebra.
Boolean Algebra Introduction CSCI 240
COMS 361 Computer Organization
Presentation transcript:

CS2100 Computer Organisation http://www.comp.nus.edu.sg/~cs2100/ Boolean Algebra (AY2014/5 Semester 2)

WHERE ARE WE NOW? Number systems and codes Boolean algebra Preparation: 2 weeks Number systems and codes Boolean algebra Logic gates and circuits Simplification Combinational circuits Sequential circuits Performance Assembly language The processor: Datapath and control Pipelining Memory hierarchy: Cache Input/output Logic Design: 3 weeks Computer organisation CS2100 Boolean Algebra

CHECK LIST Have you done the Quick Review Questions for Chapter 2 Number Systems and Code? Have you attempted the Self-Assessment Exercise #1 on IVLE Assessment? Have you clarified your doubts on IVLE forum? Ready to do a pop quiz? CS2100 Boolean Algebra

BOOLEAN ALGEBRA Read up DLD for details! Boolean Algebra Precedence of Operators Truth Table Duality Basic Theorems Complement of Functions Standard Forms Minterms and Maxterms Canonical Forms Read up DLD for details! CS2100 Boolean Algebra

DIGITAL CIRCUITS (1/2) Two voltage levels High, true, 1, asserted Low, false, 0, deasserted A digital watch Signals in digital circuit High Low Signals in analog circuit CS2100 Boolean Algebra

DIGITAL CIRCUITS (2/2) Advantages of digital circuits over analog circuits More reliable (simpler circuits, less noise-prone) Specified accuracy (determinable) Abstraction can be applied using simple mathematical model – Boolean Algebra Ease design, analysis and simplification of digital circuit – Digital Logic Design CS2100 Boolean Algebra

TYPES OF LOGIC BLOCKS Combinational: no memory, output depends solely on the input Gates Decoders, multiplexers Adders, multipliers Sequential: with memory, output depends on both input and current state Counters, registers Memories CS2100 Boolean Algebra

BOOLEAN ALGEBRA Boolean values: Connectives Truth tables Logic gates True (1) False (0) Connectives Conjunction (AND) A  B; A  B Disjunction (OR) A + B; A  B Negation (NOT) ; A; A' Truth tables A B A  B 1 A B A + B 1 A A' 1 Logic gates A B AB A A' A B A+B CS2100 Boolean Algebra

AND (∙) Do write the AND operator ∙ instead of omitting it. Example: Write a∙b instead of ab Why? Writing ab could mean it is a 2-bit value. CS2100 Boolean Algebra

LAWS OF BOOLEAN ALGEBRA Identity laws A + 0 = 0 + A = A ; A  1 = 1  A = A Inverse/complement laws A + A' = 1 ; A  A' = 0 Commutative laws A + B = B + A ; A  B = B  A Associative laws A + (B + C) = (A + B) + C ; A  (B  C) = (A  B)  C Distributive laws A  (B + C) = (A  B) + (A  C) ; A + (B  C) = (A + B)  (A + C) CS2100 Boolean Algebra

PRECEDENCE OF OPERATORS Precedence from highest to lowest Not And Or Examples: A  B + C = (A  B) + C X + Y' = X + (Y') P + Q'  R = P + ((Q')  R) Use parenthesis to overwrite precedence. Examples: A  (B + C) (P + Q)'  R CS2100 Boolean Algebra

TRUTH TABLE Provide a listing of every possible combination of inputs and its corresponding outputs. Inputs are usually listed in binary sequence. Example Truth table with 3 inputs and 2 outputs x y z y + z x  (y + z) 1 CS2100 Boolean Algebra

PROOF USING TRUTH TABLE Prove: x  (y + z) = (x  y) + (x  z) Construct truth table for LHS and RHS x y z y + z x  (y + z) x  y x  z (x  y) + (x  z) 1 Check that column for LHS = column for RHS CS2100 Boolean Algebra 

QUICK REVIEW QUESTIONS (1) DLD page 59 Question 3-1. CS2100 Boolean Algebra

DUALITY If the AND/OR operators and identity elements 0/1 in a Boolean equation are interchanged, it remains valid Example: The dual equation of a+(bc)=(a+b)(a+c) is a(b+c)=(ab)+(ac) Duality gives free theorems – “two for the price of one”. You prove one theorem and the other comes for free! Examples: If (x+y+z)' = x'y'z' is valid, then its dual is also valid: (xyz)' = x'+y'+z' If x+1 = 1 is valid, then its dual is also valid: x0 = 0 CS2100 Boolean Algebra

BASIC THEOREMS (1/2) Idempotency Zero and One elements Involution X + X = X ; X  X = X Zero and One elements X + 1 = 1 ; X  0 = 0 Involution ( X' )' = X Absorption X + XY = X ; X(X + Y) = X Absorption (variant) X + X'Y = X + Y ; X(X' + Y) = XY CS2100 Boolean Algebra

BASIC THEOREMS (2/2) DeMorgan’s (X + Y)' = X'  Y' ; (X  Y)' = X' + Y' DeMorgan’s Theorem can be generalised to more than two variables, example: (A + B + … + Z)' = A'  B'  …  Z' Consensus XY + X'Z + YZ = XY + X'Z (X+Y)(X'+Z)(Y+Z) = (X+Y)(X'+Z) CS2100 Boolean Algebra

PROVING A THEOREM Theorems can be proved using truth table, or by algebraic manipulation using other theorems/laws. Example: Prove absorption theorem X + XY = X X + XY = X1 + XY (by identity) = X(1+Y) (by distributivity) = X(Y+1) (by commutativity) = X1 (by one element) = X (by identity) By duality, we have also proved X(X+Y) = X CS2100 Boolean Algebra

BOOLEAN FUNCTIONS Examples of Boolean functions (logic equations): F1(x,y,z) = xyz' F2(x,y,z) = x + y'z F3(x,y,z) = x'y'z + x'yz + xy' F4(x,y,z) = xy' + x'z x y z F1 F2 F3 F4 1 CS2100 Boolean Algebra 

COMPLEMENT Given a Boolean function F, the complement of F, denoted as F', is obtained by interchanging 1 with 0 in the function’s output values. Example: F1 = xyz' What is F1' ? x y z F1 F1' 1 CS2100 Boolean Algebra 

STANDARD FORMS (1/2) Certain types of Boolean expressions lead to circuits that are desirable from implementation viewpoint. Two standard forms: Sum-of-Products Product-of-Sums Literals A Boolean variable on its own or in its complemented form Examples: x, x', y, y' Product term A single literal or a logical product (AND) of several literals Examples: x, xyz', A'B, AB, dg'vw CS2100 Boolean Algebra

STANDARD FORMS (2/2) Sum term Sum-of-Products (SOP) expression A single literal or a logical sum (OR) of several literals Examples: x, x+y+z', A'+B, A+B, c+d+h'+j Sum-of-Products (SOP) expression A product term or a logical sum (OR) of several product terms Examples: x, x + yz', xy' + x'yz, AB + A'B', A + B'C + AC' + CD Product-of-Sums (POS) expression A sum term or a logical product (AND) of several sum terms Examples: x, x(y+z'), (x+y')(x'+y+z), (A+B)(A'+B'), (A+B+C)D'(B'+D+E') Every Boolean expression can be expressed in SOP or POS. CS2100 Boolean Algebra

DO IT YOURSELF Put the right ticks in the following table. Expression SOP expr: A product term or a logical sum (OR) of several product terms. POS expr: A sum term or a logical product (AND) of several sum terms. Put the right ticks in the following table. Expression SOP? POS? X'∙Y + X∙Y' + X∙Y∙Z (X+Y')∙(X'+Y)∙(X'+Z') X' + Y + Z X∙(W' + Y∙Z) X∙Y∙Z' W∙X'∙Y + V∙(X∙Z + W') CS2100 Boolean Algebra 

QUICK REVIEW QUESTIONS (2) DLD page 59 Questions 3-2 to 3-5. CS2100 Boolean Algebra

MINTERMS & MAXTERMS (1/2) A minterm of n variables is a product term that contains n literals from all the variables. Example: On 2 variables x and y, the minterms are: x'∙y', x'∙y, x∙y' and x∙y A maxterm of n variables is a sum term that contains n literals from all the variables. Example: On 2 variables x and y, the maxterms are: x'+y', x'+y, x+y' and x+y In general, with n variables we have 2n minterms and 2n maxterms. CS2100 Boolean Algebra

MINTERMS & MAXTERMS (2/2) The minterms and maxterms on 2 variables are denoted by m0 to m3 and M0 to M3 respectively. x y Minterms Maxterms Term Notation x'∙y' m0 x+y M0 1 x'∙y m1 x+y' M1 x∙y' m2 x'+y M2 x∙y m3 x'+y' M3 Each minterm is the complement of the corresponding maxterm Example: m2 = x∙y' m2' = ( x∙y' )' = x' + ( y' )' = x' + y = M2 CS2100 Boolean Algebra

CANONICAL FORMS Canonical/normal form: a unique form of representation. Sum-of-minterms = Canonical sum-of-products Product-of-maxterms = Canonical product-of-sums CS2100 Boolean Algebra

SUM-OF-MINTERMS Given a truth table, example: y z F1 F2 F3 1 Obtain sum-of-minterms expression by gathering the minterms of the function (where output is 1). F1 = x∙y∙z' = m6 F2 = F3 = CS2100 Boolean Algebra 

PRODUCT-OF-MAXTERMS Given a truth table, example: y z F1 F2 F3 1 F2 = (x+y+z) ∙ (x+y'+z) ∙ (x+y'+z') = M0 ∙ M2 ∙ M3 = PM(0,2,3) Obtain product-of-maxterms expression by gathering the maxterms of the function (where output is 0). F3 = CS2100 Boolean Algebra 

CONVERSION We can convert between sum-of-minterms and product-of-maxterms easily Example: F2 = Sm(1,4,5,6,7) = PM(0,2,3) Why? See F2' in truth table. x y z F2 F2' 1 F2' = m0 + m2 + m3 Therefore, F2 = (m0 + m2 + m3)' = m0' ∙ m2' ∙ m3' (by DeMorgan’s) = M0 ∙ M2 ∙ M3 (mx' =Mx) CS2100 Boolean Algebra

READING ASSIGNMENT Conversion of Standard Forms Read up DLD section 3.4, pg 57 – 58. CS2100 Boolean Algebra

QUICK REVIEW QUESTIONS (3) DLD pages 60 - 61 Questions 3-6 to 3-13. CS2100 Boolean Algebra

STUDENTS’ TIME At every Wednesday’s lecture, I will set aside some time (about 5 minutes?) to let you share something you’ve come across with your fellow course-mates. It can be a website, an article, a book, or anything (like a particular technique you have learned to tackle a tough tutorial question)! It should be related to CS2100, preferably (but it’s okay if it’s not) about the topics we are currently discussing or we have recently discussed. Just drop me an email (tantc @ comp.nus.edu.sg) a few days before the lecture, sending me the information. CS2100 Boolean Algebra

END CS2100 Boolean Algebra