3/5/20121 Lattice modeling for a storage ring with magnetic field data X. Huang, J. Safranek (SLAC) Y. Li (BNL) 3/5/2012 FLS2012, Ring WG, X. Huang.

Slides:



Advertisements
Similar presentations
Simona Bettoni and Remo Maccaferri, CERN Wiggler modeling Double-helix like option.
Advertisements

1 ILC Bunch compressor Damping ring ILC Summer School August Eun-San Kim KNU.
Ultra Low Vertical Emittance at the Australian Light Source Mark Boland on behalf of Rohan Dowd 1.
Transport formalism Taylor map: Third order Linear matrix elementsSecond order matrix elements Truncated maps Violation of the symplectic condition !
Wilson Lab Tour Guide Orientation 11 December 2006 CLASSE 1 Focusing and Bending Wilson Lab Tour Guide Orientation M. Forster Mike Forster 11 December.
July 22, 2005Modeling1 Modeling CESR-c D. Rubin. July 22, 2005Modeling2 Simulation Comparison of simulation results with measurements Simulated Dependence.
Lattice calculations: Lattices Tune Calculations Dispersion Momentum Compaction Chromaticity Sextupoles Rende Steerenberg (BE/OP) 17 January 2012 Rende.
Lecture 5: Beam optics and imperfections
Searching for Quantum LOVE at the Australian Synchrotron Light Source Eugene Tan On behalf of Rohan Dowd 120/10/2010Eugene Tan – IWLC 2010, Genega ASLS.
Topic Three: Perturbations & Nonlinear Dynamics UW Spring 2008 Accelerator Physics J. J. Bisognano 1 Accelerator Physics Topic III Perturbations and Nonlinear.
The HiLumi LHC Design Study is included in the High Luminosity LHC project and is partly funded by the European Commission within the Framework Programme.
Yichao Jing 11/11/2010. Outline Introduction Linear lattice design and basic parameters Combined function magnets study and feasibility Nonlinear dynamics.
PTC ½ day – Experience in PS2 and SPS H. Bartosik, Y. Papaphilippou.
Simulation of direct space charge in Booster by using MAD program Y.Alexahin, N.Kazarinov.
Y. Ohnishi / KEK KEKB-LER for ILC Damping Ring Study Simulation of low emittance lattice includes machine errors and optics corrections. Y. Ohnishi / KEK.
1 Status of EMMA Shinji Machida CCLRC/RAL/ASTeC 23 April, ffag/machida_ ppt & pdf.
Development of Simulation Environment UAL for Spin Studies in EDM Fanglei Lin December
Emittance Growth from Elliptical Beams and Offset Collision at LHC and LRBB at RHIC Ji Qiang US LARP Workshop, Berkeley, April 26-28, 2006.
Matching recipe and tracking for the final focus T. Asaka †, J. Resta López ‡ and F. Zimmermann † CERN, Geneve / SPring-8, Japan ‡ CERN, Geneve / University.
6. betatron coupling sources: skew quadrupoles, solenoid fields concerns: reduction in dynamic (& effective physical) aperture; increase of intrinsic &
Studies on Lattice Calibration With Frequency Analysis of Betatron Motion R. Bartolini DIAMOND Light Source Ltd FMA workshop, Orsay, LURE, 1 st and 2 nd.
Analytical considerations for Theoretical Minimum Emittance Cell Optics 17 April 2008 F. Antoniou, E. Gazis (NTUA, CERN) and Y. Papaphilippou (CERN)
Simulation of direct space charge in Booster by using MAD program Y.Alexahin, A.Drozhdin, N.Kazarinov.
Dynamic Aperture Study for the Ion Ring Lattice Options Min-Huey Wang, Yuri Nosochkov MEIC Collaboration Meeting Fall 2015 Jefferson Lab, Newport News,
Design of an Isochronous FFAG Ring for Acceleration of Muons G.H. Rees RAL, UK.
1 FFAG Role as Muon Accelerators Shinji Machida ASTeC/STFC/RAL 15 November, /machida/doc/othertalks/machida_ pdf/machida/doc/othertalks/machida_ pdf.
S. Kahn 5 June 2003NuFact03 Tetra Cooling RingPage 1 Tetra Cooling Ring Steve Kahn For V. Balbekov, R. Fernow, S. Kahn, R. Raja, Z. Usubov.
Optimization of Field Error Tolerances for Triplet Quadrupoles of the HL-LHC Lattice V3.01 Option 4444 Yuri Nosochkov Y. Cai, M-H. Wang (SLAC) S. Fartoukh,
Beam Loss Simulation in the Main Injector at Slip-Stacking Injection A.I. Drozhdin, B.C. Brown, D.E. Johnson, I. Kourbanis, K. Seiya June 30, 2006 A.Drozhdin.
A U.S. Department of Energy Office of Science Laboratory Operated by The University of Chicago Office of Science U.S. Department of Energy Containing a.
Alexander Molodozhentsev KEK for MR-commissioning group September 20, 2005 for RCS-MR commissioning group September 27, 2005 Sextupole effect for MR -
Vertical Emittance Tuning at the Australian Synchrotron Light Source Rohan Dowd Presented by Eugene Tan.
Frequency Map Analysis Workshop 4/2/2004 Peter Kuske Refinements of the non-linear lattice model for the BESSY storage ring P. Kuske Linear Lattice My.
Nonlinear Dynamic Study of FCC-ee Pavel Piminov, Budker Institute of Nuclear Physics, Novosibirsk, Russia.
Tuesday, 02 September 2008FFAG08, Manchester Stephan I. Tzenov1 Modeling the EMMA Lattice Stephan I. Tzenov and Bruno D. Muratori STFC Daresbury Laboratory,
1 EMMA Tracking Studies Shinji Machida ASTeC/CCLRC/RAL 4 January, ffag/machida_ ppt & pdf.
By Verena Kain CERN BE-OP. In the next three lectures we will have a look at the different components of a synchrotron. Today: Controlling particle trajectories.
Orbits, Optics and Beam Dynamics in PEP-II Yunhai Cai Beam Physics Department SLAC March 6, 2007 ILC damping ring meeting at Frascati, Italy.
11/18/2004 FNAL Advanced Optics Measurements at Tevatron Vadim Sajaev ANL V. Lebedev, V. Nagaslaev, A. Valishev FNAL.
Lecture 4 Longitudinal Dynamics I Professor Emmanuel Tsesmelis Directorate Office, CERN Department of Physics, University of Oxford ACAS School for Accelerator.
1 Tracking study of muon acceleration with FFAGs S. Machida RAL/ASTeC 6 December, ffag/machida_ ppt.
Bent combined function bending magnets and optics: the case of SESAME Attilio Milanese 3 Dec
Operated by JSA for the U.S. Department of Energy Thomas Jefferson National Accelerator Facility Alex Bogacz 1 Status of Baseline Linac and RLAs Design.
Hybrid Fast-Ramping Synchrotron to 750 GeV/c J. Scott Berg Brookhaven National Laboratory MAP Collaboration Meeting March 5, 2012.
Numerical Simulations for IOTA Dmitry Shatilov BINP & FNAL IOTA Meeting, FNAL, 23 February 2012.
Choice of L* for FCCee: IR optics and DA A.Bogomyagkov, E.Levichev, P.Piminov Budker Institute of Nuclear Physics Novosibirsk HF2014, IHEP Beijing, 9-12.
Operated by JSA for the U.S. Department of Energy Thomas Jefferson National Accelerator Facility Alex Bogacz IDS- NF Acceleration Meeting, Jefferson Lab,
Ultra-low Emittance Coupling, method and results from the Australian Synchrotron Light Source Rohan Dowd Accelerator Physicist Australian Synchrotron.
Orbit Response Matrix Analysis
Sextupole calibrations via measurements of off-energy orbit response matrix and high order dispersion Nicola Carmignani.
Benchmarking MAD, SAD and PLACET Characterization and performance of the CLIC Beam Delivery System with MAD, SAD and PLACET T. Asaka† and J. Resta López‡
Ben Cerio Office of Science, SULI Program 2006
Large Booster and Collider Ring
Impact of remanent fields on SPS chromaticity
Coupling Correction at the Australian Synchrotron
First Look at Nonlinear Dynamics in the Electron Collider Ring
Multiturn extraction for PS2
Negative Momentum Compaction lattice options for PS2
PEPX-type BAPS Lattice Design and Beam Dynamics Optimization
Optics Measurements in the PSB
with Model Independent
IR Lattice with Detector Solenoid
Negative Momentum Compaction lattice options for PS2
Yuri Nosochkov Yunhai Cai, Fanglei Lin, Vasiliy Morozov
Alejandro Castilla CASA/CAS-ODU
G.H. Wei, V.S. Morozov, Fanglei Lin Y. Nosochkov (SLAC), M-H. Wang
Integration of Detector Solenoid into the JLEIC ion collider ring
Upgrade on Compensation of Detector Solenoid effects
Fanglei Lin JLEIC R&D Meeting, August 4, 2016
Lecture 8 ACCELERATOR PHYSICS HT E. J. N. Wilson.
Presentation transcript:

3/5/20121 Lattice modeling for a storage ring with magnetic field data X. Huang, J. Safranek (SLAC) Y. Li (BNL) 3/5/2012 FLS2012, Ring WG, X. Huang

Discrepancy between original model and measurements. Understanding dynamic effects of rectangular gradient dipoles. Understanding the sources of discrepancies in linear and nonlinear characteristics between models and measurements. –Fringe field of dipoles –Fringe field of quadrupoles –Cross-talk of fields between adjacent magnets? Motivation 3/5/2012FLS2012, Ring WG, X. Huang2 1.The ideal trajectory in RGD is not a circular arc. 2.Gradient varies with s-variable 3.Off-plane longitudinal field

The field-integration approach 3/5/2012FLS2012, Ring WG, X. Huang3 An AT pass-method that transfer phase space coordinates from one end to the other of a magnetic field region with Bx, By, Bz defined as function of (x, y, z). Coordinate transformation at the edges. For dipoles, additional transformation is needed. Equation of motion when using z as free variable.

Magnetic field in a standard SPEAR3 dipole 3/5/20124 We have coil, wire measurements. Hall probe scans along Z in 2001, Hall probe scans on X-Z plane in Hall probe x-z scan (2007) We started examining our lattice model from magnetic fields in magnets. FLS2012, Ring WG, X. Huang

An analytic dipole field model 3/5/20125 An analytical field model can be built according to general field expansion to obtain the full magnetic field distribution in the dipole. This also removes noise from field measurements. Take the dipole component as an example. Note that the B0/B1 ratio is not constant in the fringe region. FLS2012, Ring WG, X. Huang

Energy calibration 3/5/20126 How to calibrate the require bending field for a 3GeV beam? This is how dipole magnets were positioned: adjust the dipole current (converted to K-value) until the alignment requirement is met. + (Corbett & Tanabe, 2002) (Yoon, et al, NIMA 2004). The virtual center was held constant ( mm). Following this procedure, the required field integral is calculated to be (1) T-m, with a fixed virtual center, while the measured field integral is T-m for A (operating current since day 1 of SPEAR3). (2) T-m, with the fitted field profile. So the SPEAR3 beam energy may be lower than the nominal value by 0.1% Z-scan Energy measurement at SPEAR3 confirmed the prediction with high precision. FLS2012, Ring WG, X. Huang

Effects of quadrupole fringe field 3/5/20127 J. Irwin, C.X. Wang The leading correction for a hard-edge model is from the last two terms, which are nonlinear (2). A general Hamiltonian (including longitudinal field variation) can be derived using a proper magnetic field expansion (1). The leading correction term from a soft fringe model is linear (3). * El-Kareh; Forest; Bassetti & Biscari ** Lee-Whiting, Forest & Milutinovic, Irwin & Wang, Zimmermann ***Irwin & Wang (PAC’95), D. Zhou (IPAC10). A perturbation approach FLS2012, Ring WG, X. Huang

The linear correction to quadrupole map 3/5/20128 J. Irwin, C.X. Wang, PAC95 The correction map The generating function for the correction map matrix For a symmetric quadrupole, the entrance edge has a reversed sign for I 1 The tune changes are (always negative) leading contribution For SPEAR3, quadrupole fringe fields cause tune changes of [-0.065, ], in agreement with the predictions by the above equation. FLS2012, Ring WG, X. Huang

The nonlinear correction 3/5/20129 The generating function for the correction map (exit edge) The function for the entrance edge has an opposite sign. F. Zimmermann derived the average Hamiltonian that include both edges. Hard edge Additional soft edge contribution. 2  is fringe length. and tune dependence on amplitude (only showing hard edge contribution below) This agree with tracking quite well. FLS2012, Ring WG, X. Huang Forest & Milutinovic

An AT quadrupole passmethod with fringe field 3/5/2012FLS2012, Ring WG, X. Huang10 Forest & Milutinovic pointed out the skew quadrupole part corresponds to a ‘kick map’! A normal quadrupole can thus be modeled by a pair of pi/4 rotation and a kick map. This is the basis for the nonlinear part of the new AT quadrupole pass method. The new quad passmethod agree very well with the field-integration method. Both linear and nonlinear effects are considered in the new quadrupole passmethod.

The SPEAR3 quadrupole field profile 3/5/ The analytical quadrupole field map for SPEAR3 magnet was based on magnet modeling. Simulated field is converted to an analytic form. Magnetic field All SPEAR3 quads have identical fringe profile. FLS2012, Ring WG, X. Huang

Comparison of models to measurement 3/5/ Dipole field is given by the field profile and alignment requirement. Drift lengths neighboring to dipoles adjusted according to measured rf frequency. Strengths of quadrupoles and sextupoles are derived from operating currents and measured excitation curves. No adjustment of any magnet strength! ParameterMeasure d All field modelBend field, quad i2k with fringe Bend field, quad i2K i2k old AT model Tune x Tune y Chrom x Chrom y The model is based on a calibrated experimental lattice with all IDs open (4/6/2009). Effect of the predicted -0.1% beam energy shift is not included, which change the tunes by [0.023, ] for [nux, nuy]. The tune differences are [ ] between the best model and the measurement, a big improvement from the original model. FLS2012, Ring WG, X. Huang

Beta beat and correction 3/5/ Beta beat is relative to the ideal lattice. “No correction” is for “bend field + quad fringe” “corrected” is after the quadrupole strength is adjusted to reduce beta beat (LOCO). Possible causes of optics difference between measurement and un-adjusted model: (1)Interference of magnetic fields between neighboring magnets. (2)Magnet calibration errors. FLS2012, Ring WG, X. Huang

The tune map 3/5/ Chromaticities are corrected with SF/SD to obtain [1.65, 2.18]. Tunes are obtained by tracking 256 turns. “new model” = field model for bend + quad fringe. This model agrees with measurement better. FLS2012, Ring WG, X. Huang

High-order chromaticities 3/5/ Low tune Old model measuredNew model chrx01.725* ** chrx chrx chry02.081* ** chry *** chry * Model chromaticities adjusted to match measured values. ** model chromaticities adjusted, but not yet completely on target. *** improvement from old model. FLS2012, Ring WG, X. Huang

Progress toward fast tracking for dipoles 3/5/2012FLS2012, Ring WG, X. Huang16 (1)Extract a Lie map from the Taylor map obtained from the field- integration method (Yongjun Li). A map may also be obtained with COSYInfinity. (2)Split the f3 and f4 polynomials into individual terms for tracking (f4 terms are altered by splitting f3), ignore higher order polynomials. Monomial maps have exact solutions (A. Chao, Lie Algrebra Notes). An AT passmethod is written to track f3 (35 terms) and f4 (70 terms) maps (f2 is supplied by a matrix).

Comparison of Map-pass to field-pass 3/5/2012FLS2012, Ring WG, X. Huang17 For comparison, the second order transport map is extracted with AT for the SPEAR3 dipole, using the field-pass or the map-pass. T1ij from the field pass T1ij from the map pass All transverse-only elements agree well (for T2ij, T3ij T4ij, too). The discrepancy for the momentum-related elements may be caused by an problem in the field-pass used for map extraction (different from the one compared to here). The map-pass provides a symplectic tracking solution to the dipole model.

Summary and Discussion We built a lattice model from magnetic field measurements and alignment requirements and compared the linear optics to beam based measurements. –Improved: tunes, betatron functions. –But: still up to 15% maximum beta beat (vertical) After optics and chromaticity corrections, nonlinear parameters from the model are compared to beam based measurements. –Improved: 2nd order vertical chromaticity, tune map. –But: the tune map is still slightly different from measurement. We have developed fast symplectic method to represent high order effects. An accurate model may be crucial for a smooth commissioning of a new machine and for dynamic aperture optimization of existing machines. –Quadrupole fringe field effect (tune shifts and beta beat) would be larger for a large ring (with more quads). –Magnetic field based lattice can be used as a “reference” model. 3/5/ More efforts are need to understand the discrepancies between model and measurements. FLS2012, Ring WG, X. Huang

This slide is left blank 3/5/2012FLS2012, Ring WG, X. Huang19

The dipole field map 3/5/ By(at y=0,z=0) = *x *x^2 ByL = *x *x^2 Coil measurement gives ByL (T m)= x x^2 B0, B1, B2 from X-Z scan Note that the dipole/quadrupole ratio is constant ( mm) in the magnet body, but varying in the fringe. The integrated quadrupole component is actually 2% weaker than the present model. (The coil measurement gives an average ratio of mm) FLS2012, Ring WG, X. Huang

The linear correction to quadrupole map 3/5/ A perturbation approach J. Irwin, C.X. Wang, PAC95 Hard-edge model, for exit edge Perturbation term The map The generating function for the correction map (only leading contribution is shown) matrix For a symmetric quadrupole, the entrance edge has a reversed sign for I 1 The tune change would be (always negative) FLS2012, Ring WG, X. Huang

Verification of the quad fringe pass method 3/5/ y i =0.005 m With the (quad+matrix) part subtracted. Zimmerman result is from the average Hamiltonian H 1+2 Quadpass: quad transfer matrix Quadpass+matrix: quad transfer matrix + linear edge transfer matrix. New quad pass: with linear and nonlinear corrrection. Field pass: integration through magnetic field. FLS2012, Ring WG, X. Huang

A pass method for magnetic field in AT 7/20/ (1)Coordinate transformation at the entrance and exit of the magnets (2)Integration of the Lorentz equation in the body of magnets. Can we study beam dynamics with such a pass method? With an accurate magnetic field model, we can reproduce reality in simulation. Integration is slow and non-symplectic, not good for dynamic aperture tracking. But it should be good for linear and nonlinear parameter evaluation.