The earliest phases of OB star formation revealed by the Herschel key program HOBYS Martin Hennemann – HOBYS consortium Lab. AIM/Service d’Astrophysique.

Slides:



Advertisements
Similar presentations
Riunione Avanzamento 1 ASI – Roma 11 Novembre 2008 INAF IFSI IRA OAFI OACT UNIRM1 UNIRM2 UNILE 1 SWG3: Evolution of Young Stellar Objects Goals Establish.
Advertisements

The Quest for Massive Protostars Sergio Molinari IFSI-CNR, Roma S. Pezzuto, L. IFSI-CNR, Roma L. Testi, R. Cesaroni, F. Palla, F. Fontani,
Intermediate-mass star- forming regions: are they so complex? Maite Beltrán Josep Miquel Girart Robert Estalella Paul T.P. Ho Aina Palau.
The Serpens Star Forming Region in HCO +, HCN, and N 2 H + Michiel R. Hogerheijde Steward Observatory The University of Arizona.
Hi-GAL PI: Sergio Molinari (Rome) + Hi-GAL team … (~150 researchers)
High Resolution Observations in B1-IRS: ammonia, CCS and water masers Claire Chandler, NRAO José F. Gómez, LAEFF-INTA Thomas B. Kuiper, JPL José M. Torrelles,
Masers and Massive Star Formation Claire Chandler Overview: –Some fundamental questions in massive star formation –Clues from masers –Review of three regions:
Luminous Infrared Galaxies with the Submillimeter Array: Probing the Extremes of Star Formation Chris Wilson (McMaster), Glen Petitpas, Alison Peck, Melanie.
Molecular Gas, Dense Molecular Gas and the Star Formation Rate in Galaxies (near and far) P. Solomon Molecular Gas Mass as traced by CO emission and the.
1)Disks and high-mass star formation: existence and implications 2)The case of G : characteristics 3)Velocity field in G31.41: rotation or expansion?
Progresses on our understanding the processes of star formation in the Milky Way from Herschel observations Davide Elia INAF-IAPS, Roma Part II The Herschel.
Filamentary Structures in Molecular Clouds and their connection with Star Formation E.Schisano 1, S.Molinari 1, D.Polychroni 1, D.Elia 1, M.Pestalozzi.
20” S. Molinari – INAF/IFSI, Rome Hi-GAL team IFSI - Arcetri - Univ. Rome 1/2 - Univ. Lecce (Italy), CESR - OAMP - IAS - Saclay (France), RAL - Herts -
Dust/Gas Correlation in the Large Magellanic Cloud: New Insights from the HERITAGE and MAGMA surveys Julia Roman-Duval July 14, 2010 HotScI.
From Pre-stellar Cores to Proto-stars: The Initial Conditions of Star Formation PHILIPPE ANDRE DEREK WARD-THOMPSON MARY BARSONY Reported by Fang Xiong,
NRAO Socorro 05/2009 Radio Continuum Studies of Massive Protostars Peter Hofner New Mexico Tech & NRAO.
Low-Mass Star Formation in a Small Group, L1251B Jeong-Eun Lee UCLA.
Portrait of a Forming Massive Protocluster: NGC6334 I(N) Todd Hunter (NRAO/North American ALMA Science Center) Collaborators: Crystal Brogan (NRAO) Ken.
DUSTY04 – Paris ALMA and ISM / Star Formation Stéphane GUILLOTEAU Observatoire de Bordeaux.
Spitzer mid-IR image of the DR21 region in the Cygnus-X molecular complex Image Credit: NASA, Spitzer Space Telescope.
EGOs: Massive YSOs in IRDCs Ed Churchwell & Claudia Cyganowski with co-workers: Crystal Brogan, Todd Hunter, Barb Whitney Qizhou Zhang Dense Cores in Dark.
Mini Workshop on Star Formation and Astrochemistry. Barcelona, 2006 November 23 1 Robert Estalella, Aina Palau, Maite Beltrán (UB) Paul T. P. Ho (CfA),
Cambridge, June 13-16, 2005 A Study of Massive Proto- and Pre-stellar Candidates with the SEST Antenna Maite Beltrán Universitat de Barcelona J. Brand.
STAR FORMATION STUDIES with the CORNELL-CALTECH ATACAMA TELESCOPE Star Formation/ISM Working Group Paul F. Goldsmith (Cornell) & Neal. J. Evans II (Univ.
Á L V A R O S Á N C H E Z M O N G E B A R C E L O N A - N O V E M B E R 23, 2006 Centimeter and Millimeter Emission from Selected High-Mass Star-Forming.
Star Formation Research Now & With ALMA Debra Shepherd National Radio Astronomy Observatory ALMA Specifications: Today’s (sub)millimeter interferometers.
TURBULENCE AND HEATING OF MOLECULAR CLOUDS IN THE GALACTIC CENTER: Natalie Butterfield (UIowa) Cornelia Lang (UIowa) Betsy Mills (NRAO) Dominic Ludovici.
MALT 90 Millimetre Astronomy Legacy Team 90 GHz survey
How do massive stars form? A comparison of model tracks with Herschel data Michael D Smith CAPS University of Kent Available at:
A MINIMUM COLUMN DENSITY FOR O-B STAR FORMATION: AN OBSERVATIONAL TEST Ana López Sepulcre INAF - Osservatorio Astrofisico di Arcetri (Firenze, ITALY) Co-authors:
Deciphering Ancient Terrsa 20 Apr 2010 Low-metallicity star formation and Pop III-II transition Kazu Omukai (Kyoto U.) Collaborators: Naoki.
Direct Physical Diagnostics of Triggered Star Formation Rachel Friesen NRAO Postdoctoral Fellow North American ALMA Science Center C. Brogan, R. Indebetouw,
CARMA Large Area Star-formation SurveY  Completing observations of 5 regions of square arcminutes with 7” angular resolution in the J=1-0 transitions.
Studying Young Stellar Objects with the EVLA
The Local Universe A CCAT perspective Christine Wilson McMaster University, Canada 7 January 20131AAS 221 – Long Beach, CA.
Molecular gas and dust in the Magellanic Clouds C. Bot on behalf of Mónica Rubio Dusty, 29 oct 2004.
Using masers as evolutionary probes in the G333 GMC (as well as some follow up work) Shari Breen, Simon Ellingsen, Ben Lewis, Melanie Johnston-Hollitt,
 1987, Whistler: first time I met Malcolm  , post-doc at MPIfR: study of molecular gas in UC HII regions (NH 3, C 34 S, CH 3 CN) with 100m and.
Filaments in the Galaxy: Their properties and their connection with Star Formation Eugenio Schisano – IFSI INAF - Roma In collaboration with D.Polychroni,
Multiple YSOs in the low-mass star-forming region IRAS CONTENT Introduction Previous work on IRAS Observations Results Discussion.
Probing the Birth of Super Star Clusters Kelsey Johnson University of Virginia Hubble Symposium, 2005.
Early O-Type Stars in the W51-IRS2 Cluster A template to study the most massive (proto)stars Luis Zapata Max Planck Institut für Radioastronomie, GERMANY.
Possible Future Spectroscopic Star Formation Surveys James Di Francesco (National Research Council Herzberg)
Revealing the dynamics of star formation Rowan Smith Rahul Shetty, Amelia Stutz, Ralf Klessen, Ian Bonnell Zentrum für Astronomie Universität Heidelberg,
How do galaxies accrete their mass? Quiescent and star - forming massive galaxies at high z Paola Santini THE ORIGIN OF GALAXIES: LESSONS FROM THE DISTANT.
Searching for disks around high-mass (proto)stars with ALMA R. Cesaroni, H. Zinnecker, M.T. Beltrán, S. Etoka, D. Galli, C. Hummel, N. Kumar, L. Moscadelli,
KASI Galaxy Evolution Journal Club A Massive Protocluster of Galaxies at a Redshift of z ~ P. L. Capak et al. 2011, Nature, in press (arXive: )
First high-resolution 3D inversion of the dust emission in Galactic ISM with Spitzer/Herschel. The case region [l,b]=[30,0] A. Traficante, R. Paladini,
Jes Jørgensen (Leiden), Sebastien Maret (CESR,Grenoble)
The Evolution of Massive Dense Cores Gary Fuller Holly Thomas Nicolas Peretto University of Manchester.
PI Total time #CoIs, team Silvia Leurini 24h (ALMA, extended and compact configurations, APEX?) Menten, Schilke, Stanke, Wyrowski Disk dynamics in very.
LDN 723: Can molecular emission be used as clock calibrators? Josep Miquel Girart Collaborators: J.M.Masqué,R.Estalella (UB) R.Rao (SMA)
1 SIMBA survey of southern high-mass star forming regions Santiago Faúndez (U. de Chile) Leonardo Bronfman(U. de Chile) Guido Garay (U. de Chile) Rolf.
1)The recipe of (OB) star formation: infall, outflow, rotation  the role of accretion disks 2)OB star formation: observational problems 3)The search for.
SMA and ASTE Observations of Low-mass Protostellar Envelopes in the Submillimeter CS (J = 7-6) and HCN (J = 4-3) Lines Shigehisa Takakuwa 1, Takeshi Kamazaki.
21 November 2002Millimetre Workshop 2002, ATNF High mass star formation in the Southern hemisphere sky Vincent Minier (Service d’Astrophysique, CEA Saclay),
Fumitaka Nakamura (National Astronomical Observatory of Japan)
Surveys of the Galactic Plane for Massive Young Stellar Objects
Portrait of a Forming Massive Protocluster: NGC6334 I(N)
Infrared Dark Clouds as precursors to star clusters
Bolocam Galactic Plane Survey Herschel Hi-GAL Plane Survey
The IR-Radio Correlation in High-Mass Young Stellar Objects
Filamentary Structures Traced by IRDCs
The MALT90 survey of massive star forming regions
High Resolution Submm Observations of Massive Protostars
Using ALMA to disentangle the Physics of Star Formation in our Galaxy
Infall in High-mass Star-forming Clumps
Infrared study of a star forming region, L1251B
Star Formation/ISM with Herschel
Presentation transcript:

The earliest phases of OB star formation revealed by the Herschel key program HOBYS Martin Hennemann – HOBYS consortium Lab. AIM/Service d’Astrophysique CEA Saclay PACS Formation and Development of Molecular Clouds Cologne, Oct

HOBYS cheat sheet Main questions: – What mechanisms form OB stars, and on which timescales? – What are the direct precursors of high-mass stars? – What are the (initial) conditions (density, temperature, kinematics…) within clouds/filaments forming OB stars? – What is the effect of feedback on the star formation activity? Method: Unbiased survey of cloud complexes forming OB stars/well- behaved HII regions within 3kpc with Herschel Goals: – Statistically significant sample of high-mass YSOs: ca. 250 expected – enough to study mass range up to 20 M  – Characterize their immediate and large-scale environment People: Motte, Zavagno, Bontemps et al./SPIRE consortium SAG3 P. Didelon, T. Hill, V. Minier, Q. Nguyen-Luong, N. Schneider, Ph. André, T. Csengeri, A. Men’shchikov, N. Peretto, A. Abergel, L. D. Anderson, D. Arzoumanian, M. Attard, M. Benedettini, Z. Balog, J.-P. Baluteau, J.-Ph. Bernard, P. Cox, L. Deharveng, D. Elia, C. Fallscheer, J. Di Francesco, A.-M. di Giorgio, M. Griffin, P. Hargrave, M. Huang, J. Kirk, V. Könyves, S. Leeks, J. Z. Li, A. Marston, P. Martin, S. Molinari, G. Olofsson, P. Palmeirim, P. Persi, M. Pestalozzi, S. Pezzuto, D. Polychroni, M. Reid, A. Rivera, H. Roussel, D. Russeil, K. Rygl, S. Sadavoy, P. Saraceno, M. Sauvage, T. Sousbie, E. Schisano, B. Sibthorpe, L. Spinoglio, S. Stickler, L. Testi, D. Teyssier, R. Vavrek, D. Ward- Thompson, G. White, C. D. Wilson, A.Woodcraft Near-IR extinction map of the Galaxy by S. Bontemps

(Some) HOBYS first results Properties of clumps, massive dense cores, and protostars in Rosette (Di Francesco+ 2010, Motte+ 2010, Hennemann+ 2010), W48 (Nguyen Luong+ 2011acc),… Large-scale structure and feedback in Vela C (Hill+ 2011), Rosette (Schneider+ 2010, 2011ip),… High-mass star-forming “ridges”: Example of Vela C A v : Cyan = 25, Blue = 50, Magenta = 100 mag Ridge Where will CCAT help? Constrain submm emission on 0.1pc scale Provide velocity information on 0.1pc scale

Compact objects in HOBYS fields OB star precursor candidates: “Massive Dense Cores” (ca. 0.1 pc size, density > 10 5 cm -3 ) Statistical samples from large mm-mapping (Motte+ 2007, Russeil+ 2010) Characteristic properties: Envelope mass & bolometric luminosity (  Stellar mass) Herschel covers SED peak  luminosity and dust temperature Herschel allows to cover large fields Herschel is sensitive to lower masses

Massive dense cores in IRDC G (W48, 3kpc) (Nguyen Luong+ 2011; Rygl+ in prep.)

Massive dense cores in IRDC G (W48, 3kpc) N H ~ 3-8 x cm -2, T ~ K ca M  (A V > 30) getsources: 13 objects > 20M 

SED flux scaling for large beams Difficulties in building Herschel-only SEDs: – 0.1pc dense core scale not resolved in submm – Structure of the cold environment traced in submm shows no firm boundaries? Rescaling of fluxes from large beams with size ratio: F SED = F x FWHM 160µm / FWHM – Assumes density ~ r -2, weak temperature gradient, optically thin emission

Motte+ 2007: 3 deg2 1.2mm survey found 72 dense cores in Cygnus X North 21 MDCs (> 40 M  ) assuming 20K all show protostars / outflow activity Very short lifetime of prestellar phase Massive dense cores in Cygnus X North (1.7kpc) PACS 70um PACS 160um SPIRE 250um

MDCs in Cygnus X North – Dust temperature Dust temperature for >160µm: T = 18.1 ± 3.5 K

Evolution of Massive Dense Cores Preliminary evolutionary diagram for MDCs in – Cygnus X North (biased) – IRDC G (biased) – Rosette GMC (biased) Cygnus X North: missing very evolved cores due to selection at 1.2mm Model tracks for MDCs/protocluster clumps to be improved: – size of mass reservoir?

The massive DR21 filament – An accreting “ridge”? Filament containing DR21 & DR21(OH) is most active part in Cygnus X: ~ 10 4 cm -3, M ~ M  Column density map traces fainter, perpendicular, possibly connected “subfilaments” Outflow interpretation unlikely PACS 70um PACS 160um SPIRE 250um Column density from Herschel bands

Subfilaments traced in molecular line emission Schneider+ 2010: EW oriented subfilaments Most prominent F3: –~ 3km/s velocity range, ~ 7 pc projected length – M ~ 2600 M , ~ 7 x 10 3 cm -3 Probably connected with denser NE-SW segment traced in H 13 CO+ / N 2 H+ to DR21(OH)-M and maybe with flows within the clump (Csengeri et al. 2010) Estimated input mass rate: 2 x M  /yr

Subfilaments traced in molecular line emission Schneider+ 2010: EW oriented subfilaments Most prominent F3: –~ 3km/s velocity range, ~ 7 pc projected length – M ~ 2600 M , ~ 7 x 10 3 cm -3 Probably connected with denser NE-SW segment traced in H 13 CO+ / N 2 H+ to DR21(OH)-M and maybe with flows within the clump (Csengeri et al. 2010) Estimated input mass rate: 2 x M  /yr

Subfilaments traced in molecular line emission Schneider+ 2010: EW oriented subfilaments Most prominent F3: –~ 3km/s velocity range, ~ 7 pc projected length – M ~ 2600 M , ~ 7 x 10 3 cm -3 Probably connected with denser NE-SW segment traced in H 13 CO+ / N 2 H+ to DR21(OH)-M Estimated input mass rate: 2 x 10 3 M  /yr PACS 70um PACS 160um SPIRE 250um Column density from Herschel bands Column density from Herschel + SHARCII + MAMBO

Prospects for CCAT Column density information on 0.1pc scale out to 3kpc required to constrain: – massive dense core envelope structure – properties of subfilaments: possible remains of accretion flows into massive filaments/“ridges” Velocity information for subfilaments