High efficiency Power amplifier design for mm-Wave

Slides:



Advertisements
Similar presentations
SiGe BiCMOS Device Modeling MURTY, SHERIDAN,AHLGREN, HARAMEHicum Users Group Meeting (BCTM2002) 1 Evaluation of HiCUM for Modeling DC, S-parameter and.
Advertisements

Common Emitter Amplifier. Design Rules V RE should be > 100 mV.
EC 2208 – Electronic Circuits Lab 1
In partnership with STMicroelectronics DESIGN OF A CLASS 1 POWER AMPLIFIER FOR BLUETOOTH TM APPLICATIONS Advisors Candidate Prof. Antonella D’Orazio Giovanni.
RF Amplifier Analysis and Design Critical Specifications:  Input impedance: Z in  Load Impedance: Z L  Frequency of operation (upper and lower 3 dB.
1/42 Changkun Park Title Dual mode RF CMOS Power Amplifier with transformer for polar transmitters March. 26, 2007 Changkun Park Wave Embedded Integrated.
Y. Wei, M. Urteaga, Z. Griffith, D. Scott, S. Xie, V. Paidi, N. Parthasarathy, M. Rodwell. Department of Electrical and Computer Engineering, University.
Output Stages and Power Amplifiers Output stage delivers the output signal to the load without loss of gain due to Low output resistance D.S.P. Filter.
Slide 19/3/2002 S. Xie, V. Paidi, R. Coffie, S. Keller, S. Heikman, A. Chini, U. Mishra, S. Long, M. Rodwell Department of Electrical and Computer Engineering,
Low Power RF/Analog Amplifier Design Tong Zhang Auburn University Tong Zhang Auburn University.
40 GHz MMIC Power Amplifier in InP DHBT Technology Y.Wei, S.Krishnan, M.Urteaga, Z.Griffith, D.Scott, V.Paidi, N.Parthasarathy, M.Rodwell Department of.
Design of Microwave Power Amplifier with ADS Technische Universität Berlin Fachgebiet Mikrowellentechnik Daniel Gruner, Ahmed Sayed, Ahmed Al Tanany,
2013 IEEE Compound Semiconductor IC Symposium, October 13-15, Monterey, C 30% PAE W-band InP Power Amplifiers using Sub-quarter-wavelength Baluns for Series-connected.
LECTURE 4. HIGH-EFFICIENCY POWER AMPLIFIER DESIGN
60-GHz PA and LNA in 90-nm RF-CMOS
Low Noise Amplifier. DSB/SC-AM Modulation (Review)
Part I: Amplifier Fundamentals
McGraw-Hill © 2008 The McGraw-Hill Companies Inc. All rights reserved. Electronics Principles & Applications Seventh Edition Chapter 8 Large-Signal Amplifiers.
POWER AMPLIFIER CHAPTER 4.
A 77-79GHz Doppler Radar Transceiver in Silicon
1 姓名 : 李國彰 指導教授 : 林志明老師 A 1v 2.4GHz CMOS POWER AMPLIFIER WITH INTEGRATED DIODE LINEARIZER ( The 2004 IEEE Asia-Pacific Conference on Circuits and Systems,
Design of LNA at 2.4 GHz Using 0.25 µm Technology
Seoul National University CMOS for Power Device CMOS for Power Device 전파공학 연구실 노 영 우 Microwave Device Term Project.
Study of 60GHz Wireless Network & Circuit Ahn Yong-joon.
An Ultra-Wide-Band GHz LNA in 0.18µm CMOS technology RF Communication Systems-on-chip Spring 2007.
A 30-GS/sec Track and Hold Amplifier in 0.13-µm CMOS Technology
Design of 3.67 GHz RF Power Amplifier Presenters: Akshay Iyer, Logan Woodcock Advisers: Dr. K. Koh, Yahya Mortazavi.
A Novel 2.4 GHz CMOS Class-E Power Amplifier with Efficient Power Control for Wireless Communications R. Meshkin, A. Saberkari*, and M. Niaboli Department.
Student Paper Finalist TU3B-1
V. Paidi, Z. Griffith, Y. Wei, M. Dahlstrom,
A High-Gain, Low-Noise, +6dBm PA in 90nm CMOS for 60-GHz Radio
A NEW METHOD TO STABILIZE HIGH FREQUENCY HIGH GAIN CMOS LNA RF Communications Systems-on-chip Primavera 2007 Pierpaolo Passarelli.
RFIC – Atlanta June 15-17, 2008 RMO1C-3 An ultra low power LNA with 15dB gain and 4.4db NF in 90nm CMOS process for 60 GHz phase array radio Emanuel Cohen.
Jinna Yan Nanyang Technological University Singapore
Other Transistor Circuits
Amplifiers Amplifier Parameters Gain = Po/Pi in dB = 10 log (Po/Pi)
A 2.4-GHz 0.18-um CMOS Self-Biased Cascode Power Amplifier
Introduction LNA Design figure of merits: operating power consumption, power gain, supply voltage level, noise figure, stability (Kf & B1f), linearity.
© Sean Nicolson, BCTM 2006 © Sean Nicolson, 2007 A 2.5V, 77-GHz, Automotive Radar Chipset Sean T. Nicolson 1, Keith A. Tang 1, Kenneth H.K. Yau 1, Pascal.
© 2013 The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill 8-1 Electronics Principles & Applications Eighth Edition Chapter 8 Large-Signal.
Beijing Embedded System Key Lab
RF Systems Power Amplifier Antenna model Specific Power Unit Power Amplifier Principles Power Amplifier MOSFET Power Amplifier Efficiency Class A Power.
M. Atef, Hong Chen, and H. Zimmermann Vienna University of Technology
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Frequency response of an amplifier Decibel power gain Decibel.
VI. HIGH-EFFICIENCY SWITCHMODE HYBRID AND MMIC POWER AMPLIFIERS:
The Working Theory of an RC Coupled Amplifier in Electronics.
High Gain Transimpedance Amplifier with Current Mirror Load By: Mohamed Atef Electrical Engineering Department Assiut University Assiut, Egypt.
Basics of Bypass Capacitor, Its Functions and Applications.
MMIC Design in 0.13µm SiGe BiCMOS Process by Hans Schou and Magnus Pallesen.
Chapter 13 Small-Signal Modeling and Linear Amplification
Classification of PAs: linear vs. switching
Ultra-low Power Components
Power Amplifier Considerations
Communication 40 GHz Anurag Nigam.
Chapter 12 Power Amplifiers
POWER AMPLIFIER Concept of Power Amplifier Power BJTs Power MOSFETs
High-linearity W-band Amplifiers in 130 nm InP HBT Technology
SMALL SIGNAL ANALYSIS OF CB AMPLIFIER
SMALL SIGNAL ANALYSIS OF CE AMPLIFIER
Principles & Applications Small-Signal Amplifiers
Small-Signal Modeling and Linear Amplification
ac Load Line Analysis Maximum Symmetrical Swing
Power Amplifiers.
Difference Between Voltage Amplifier and Power Amplifier
Principles & Applications Large-Signal Amplifiers
Lecture 11 Bipolar Amplifiers (1).
LECTURE # 7 BIPOLAR JUNCTION TRANSISTOR
Chapter 3 – Transistor Amplifiers – Part 1
Lecture 11 ANNOUNCEMENTS OUTLINE Review of BJT Amplifiers
CHAPTER 60 SINGLE TRANSISTOR AMPLIFIERS
Presentation transcript:

High efficiency Power amplifier design for mm-Wave Seyed Yahya Mortazavi

Outline Introduction: Power amplifier (PA) Metrics Class A, AB, B, C Pas High efficiency Class F Pas mm-Wave PA applications mm-Wave PA challenges and survey Our Designs: Steps, Simulations results Conclusions and future works

Power amplifier basics Metrics: Gain: 𝐺= 𝑃 𝑜𝑢𝑡,1𝑓 𝑃 𝑖𝑛 Efficiency: 𝜂= 𝑃 𝑜𝑢𝑡,1𝑓 𝑃 𝑑𝑐 = 𝑉 𝑚 𝐼 𝑚 2 𝑉 𝐶𝐶 𝐼 𝐼 = 𝑃 𝑜𝑢𝑡,1𝑓 𝑃 𝑑𝑖𝑠𝑠 + 𝑃 𝑜𝑢𝑡,1𝑓 Power Added Efficiency: 𝑃𝐴𝐸= 𝜂 𝑎𝑑𝑑𝑒𝑑 = 𝑃 𝑜𝑢𝑡,1𝑓 − 𝑃 𝑖𝑛 𝑃 𝑑𝑐 =𝜂(1− 1 𝐺 )

Power amplifier basics AB C B A AB B C VBE VCE Gain and Efficiency trade-off: Class A: highest gain and linearity Class C: highest efficiency ….. A AB B C time

PA basics IC IC0 , IC1 CA ωt Conduction angle (CA) 𝐼𝐶1 𝐼𝐶0 𝑃𝑑𝑐∝𝐼𝐶0 𝑃𝑙𝑜𝑎𝑑∝𝐼𝐶1 𝜂= 1 2 𝐼𝐶1 𝐼𝐶0 𝑉𝑚 𝑉𝑑𝑐 max 𝑉𝑚 = 1 2 𝑉𝑑𝑐−𝑉𝐵𝑅−𝑉𝐾𝑛𝑒𝑒 Conduction angle (CA)

PA basics High efficiency PAs Class E, switching PAs Class F ω 0 t 𝑍 𝐿,𝑛𝑓 = 𝑍 𝐿,𝑛𝑓 𝑒 −𝑗 𝜑 𝑛 𝑖 𝑐 𝑣 𝑐 High efficiency PAs Class E, switching PAs Class F 𝜂= 𝑃 𝑜𝑢𝑡,1𝑓 𝑃 𝑑𝑐 = 𝑃 𝑜𝑢𝑡,1𝑓 𝑃 𝑑𝑖𝑠𝑠 + 𝑃 𝑜𝑢𝑡,1𝑓 + 𝑛=2 ∞ 𝑃 𝑜𝑢𝑡,𝑛𝑓 𝑍 𝐿,1𝑓 = 𝑅 𝐿,𝑜𝑝𝑡 , 𝑍 𝐿,(2𝑛)𝑓 =0, 𝑍 𝐿,(2𝑛+1)𝑓 =∞ 𝑖 𝑐 𝑡 = 𝐼 0 + 𝐼 1𝑓 . 𝑐𝑜𝑠 𝜔 0 𝑡 + 𝐼 2𝑓 . sin 2𝜔 0 𝑡 +… +𝐼 2𝑛 𝑓 . sin 2𝑛 𝜔 0 𝑡 𝑣 𝑐 𝑡 = 𝑉 0 + 𝑉 1𝑓 . cos 𝜔 0 𝑡 + 𝑉 3𝑓 . cos 3𝜔 0 𝑡 +… +𝑉 (2𝑛+1) 𝑓 . cos 2𝑛+1 𝜔 0 𝑡 𝑍 𝐿,1𝑓 = 𝑅 𝐿,𝑜𝑝𝑡 , 𝑍 𝐿,(2𝑛)𝑓 =∞, 𝑍 𝐿,(2𝑛+1)𝑓 =0 ω 0 t

Class F PAs Vce Vce time time Maximally Flat (F3) Maximum Efficiency (F3) time Uses harmonics to Reduce Vce for same fundamental: same output power with less dissipated power. F3: 𝑣 𝑐𝒆 𝑡 = 𝑉 0 + 𝑉 1𝑓 . cos 𝜔 0 𝑡 + 𝑉 3𝑓 . cos 3𝜔 0 𝑡 F2: 𝑣 𝑐𝒆 𝑡 = 𝑉 0 + 𝑉 1𝑓 . cos 𝜔 0 𝑡 + 𝑉 𝟐𝑓 . cos 𝟐𝜔 0 𝑡 F35: 𝑣 𝑐𝒆 𝑡 = 𝑉 0 + 𝑉 1𝑓 . cos 𝜔 0 𝑡 + 𝑉 3𝑓 . cos 3𝜔 0 𝑡 + 𝑉 𝟓𝑓 . cos 𝟓𝜔 0 𝑡 F24: 𝑣 𝑐𝒆 𝑡 = 𝑉 0 + 𝑉 1𝑓 . cos 𝜔 0 𝑡 + 𝑉 𝟐𝑓 . cos 𝟐𝜔 0 𝑡 + 𝑉 𝟒𝑓 . cos 𝟒𝜔 0 𝑡

Class F PA Vm/Vdc Im/Idc 1.12, 1.15 Pi/2, 1.33,1.41 Pi/4 1.17,1.207 1.42,1.5 Pi/4

mm-Wave PAs Application Data Communication (based on FCC frequency allocation): 59-64 GHz (V-band), 71-76 GHz, 81-86 GHz (E-bands), and 92-95 GHz (W-bands) 77 GHz Automotive Radars > 77 GHz Active Imaging: Security gates, Medical Imaging applications, Radar systems,

Si-based mm-Wave PAs Low Break-down voltage: Reduces output voltage swing: smaller output power or gain More sensitive to parasitics: Parasitics have Lower impedance as frequency increase Close to fT of transistor: Lower power gain and PAE IC BVCO VCE

Si-based mm-wave PAs PAE (%) Pout (dBm) Pout (dBm) PAE (%) CMOS And SiGe PAs PAE (%) Pout (dBm) Frequency (GHz) Frequency (GHz) SiGe PAs PAE (%) Pout (dBm) Frequency (GHz) Frequency (GHz)

Si-based mm-wave PAs Gain(dB) Gain (dB) CMOS And SiGe PAs SiGe PAs Frequency (GHz) SiGe PAs Gain (dB) Frequency (GHz)

Review- VCE > BVCO RFIC-2008 79GHz, PAE~ 13.5%, Pout ~ 17.7 dBm, Gain~14 dB, Class AB The external base impedance seen from Q1, Q2, and Q3 is small at Wband frequencies. The resulting effective collectoremitter breakdown voltage allows the output voltage at the collectors to peak above 4.2 V, a factor of 2.5 improvement over BVceo.

Review- Cascoding TMTT-2011 77GHz, PAE~ 7.5%, Pout ~ 15 dBm, Gain~22.5 dB, Class AB the CAS topology was preferred to achieve a higher stable gain, better reverse isolation, and improved robustness. A large output voltage swing is tolerated by the CB ( > BVCO) if it is driven with a low base resistance.

Review- Current reuse TMTT-2012 77GHz, PAE~ 9%, Pout ~ 14.5 dBm, Gain~25 dB, Class AB Current reuse at Driver stage

PA design Steps DC simulations for Knee and BVCO voltages for estimating maximum voltage swing (Vpp), Calculation and simulations for finding transistor size and DC bias current for Class A PA regarding Vpp and required Pout , Current density for max fT is 8~11 mA/um for SiGe HBTs. Input matching for selected size and bias point, Iterative Load-pull simulations for determining parasitic capacitance (Cce or Cp) and verifying Ropt , Changing bias from class A to class AB for max efficiency and Gain, Adjusting Ropt Output matching,

PA design Steps Bias for class A, Ropt for Load-line Power matching vs conjugate power matching

PA design Steps Input matching and load pull (94GHz PA) Load-pull simulation is done for different Lp to get the optimum point over pure real Impedance

PA design Steps Changing bias point from A to AB PAE (%) PAE (%) VBE VBE Pin = 11 dBm Rout=38Ω Pin (dBm) Rout (Ω) Gain (dB) PAE (%) Rout=38Ω, Pin=0, 11 dBm VBE (mV)

Utilizing 3rd H for efficiency (F3) 𝜂= 𝑃 𝑜𝑢𝑡,1𝑓 𝑃 𝑑𝑐 = 𝑃 𝑜𝑢𝑡,1𝑓 𝑃 𝑑𝑖𝑠𝑠 + 𝑃 𝑜𝑢𝑡,1𝑓 + 𝑃 𝑜𝑢𝑡,3𝑓 𝑃 𝑑𝑖𝑠𝑠 + 𝑃 𝑜𝑢𝑡,1𝑓 + 𝑃 𝑜𝑢𝑡,3𝑓 𝐹3 < (𝑃 𝑑𝑖𝑠𝑠 + 𝑃 𝑜𝑢𝑡,1𝑓 + 𝑃 𝑜𝑢𝑡,3𝑓 ) 𝐴𝐵

Utilizing 3rd H for efficiency (F3) 𝐿 1 = 0.17 𝜔 0 2 𝐶 𝑝 𝐿 2 = 0.3 𝜔 0 2 𝐶 𝑝 𝐶 2 =2.4∙ 𝐶 𝑝

Utilizing 3rd H for efficiency (F3) Pdissp (mW) Pout (dBm) Pin (dBm) Pin (dBm) F3-Harmonic Control F3-filter AB PAE (%)

Utilizing 3rd H for efficiency (F3)

Utilizing 3rd H for efficiency (F3) Pdissp (mW) Pout (dBm) Pin (dBm) Pin (dBm) PAE (%) Pin (dBm)

94 GHz 1-Stage Class-F PA (VCC = 1.3V): Schematic Class-F, 1-stage design: 2nd & 3rd harmonic controls Harmonic filter: high-Z for fund & 3rd-harmonic, low-Z for 2nd-harmonic OP-1dB: ~10 dBm, Psat: ~11.5 dBm PAE: max 15-16 %

94 GHz 1-Stage Class-F PA (VCC = 1.3V): Simulations P-1dB = 7.7dBm S21 Pout (dBm) PAEmax =15.3% PAE (%) S11 S-parameter (dB) S22 Pin (dBm) Freq (GHz)

94 GHz 1-Stage Class-F PA (VCC = 1.3V): Layout gnd VBB VCC gnd gnd gnd rfIn rfOut gnd gnd Size: 535μm x 390μm

94 GHz 1-Stage Class-F PA (VCC = 2.2V): Schematic Class-F, 1-stage design: 2nd & 3rd harmonic controls Harmonic filter: high-Z for fund & 3rd-harmonic, low-Z for 2nd-harmonic OP-1dB: ~15 dBm, Psat: ~16 dBm PAE: max 21-22 %

94 GHz 1-Stage Class-F PA (VCC = 2.2V): Simulations PAEmax =21.8% S21 Pout (dBm) P-1dB = 11.9dBm PAE (%) S-parameter (dB) S22 S11 Pin (dBm) Freq (GHz)

94 GHz 1-Stage Class-F PA (VCC = 2.2V): Layout gnd VBB VCC gnd gnd gnd rfIn rfOut gnd gnd Size: 530μm x 400μm

94 GHz 2-Stage Class-F PA: Schematic Class-F, 2-stage design: 2nd & 3rd harmonic controls Harmonic filter: high-Z for fund & 3rd-harmonic, low-Z for 2nd-harmonic OP-1dB: ~16 dBm, Output Psat: ~17 dBm PAE: max 21-22 %

94 GHz 2-Stage Class-F PA : Simulations PAEmax =22% S21 P-1dB = 9.1dBm Pout (dBm) PAE (%) S-parameter (dB) S22 S11 Pin (dBm) Freq (GHz)

94 GHz 2-Stage Class-F PA : Layout gnd VBB1 VCC1 gnd gnd gnd rfIn rfOut gnd gnd gnd VCC2 VBB2 gnd Size: 670μm x 490μm

60 GHz 1-Stage Class-F PA with coupled harmonic control: Schematics Class-F, 1-stage design: 2nd & 3rd harmonic controls Harmonic filter: high-Z for fund & 3rd-harmonic, low-Z for 2nd-harmonic OP-1dB: ~12.8 dBm, Psat: ~15 dBm PAE: max 25-26 %

60 GHz 1-Stage Class-F PA with coupled harmonic control: Simulations PAEmax =25.5% S21 Pout (dBm) P-1dB = 7.7dBm PAE (%) S-parameter (dB) S11 S22 Pin (dBm) Freq (GHz) These are simulation results including layout sonnet EM-model. Single stage design has ~15 dBm Psat with 25-26% PAE.

60 GHz 1-Stage Class-F PA with coupled harmonic control: Layout gnd VBB VCC gnd gnd gnd rfIn rfOut gnd gnd Size: 710μm x 410μm

Design Summary 94GHz PAE (%) IP1dB (dBm) Psat (dBm) Gain (dB) 1stage-1.3V 15.3 7.7 12.5 3.8 1stage-2.2V 21.8 11.9 17 4 2stage 22 9.1 7.8 60GHz PAE (%) P1dB (dBm) Psat (dBm) Gain (dB) 1stage-1.3V 25.8 5.5 12.5 6.5 1stage-2.2V 29 9.7 17 7 2stage 28.5 4.2 16 11.5 33GHz PAE (%) P1dB (dBm) Psat (dBm) Gain (dB) 1stage-1.3V 30 2.5 11 7 1stage-2.2V 40 4 15 10

Si-based mm-wave PAs SiGe PAs PAE (%) Pout (dBm) Gain (dB) Frequency (GHz) Frequency (GHz) Gain (dB) Frequency (GHz)

Future Works Increasing gain using efficient driving stages Increasing gain using Power combining techniques Improving quality factor of Capacitors using MOM caps Class E PAs

60 GHz 1-Stage Class-F PA (VCC = 1.3V): Schematic Class-F, 1-stage design: 2nd & 3rd harmonic controls Harmonic filter: high-Z for fund & 3rd-harmonic, low-Z for 2nd-harmonic OP-1dB: ~11 dBm, Psat: ~12.5 dBm PAE: max 25-26 %

60 GHz 1-Stage Class-F PA (VCC = 1.3V): Simulations PAEmax =25.8% S21 Pout (dBm) PAE (%) P-1dB = 5.5dBm S-parameter (dB) S11 S22 Pin (dBm) Freq (GHz) These are simulation results including layout sonnet EM-model. Single stage design has ~12.5 dBm Psat with 25-26% PAE.

60 GHz 1-Stage Class-F PA (VCC = 1.3V): Layout gnd VBB VCC gnd gnd gnd rfIn rfOut gnd gnd Size: 610μm x 410μm

60 GHz 1-Stage Class-F PA (VCC = 2.2V): Schematic Class-F, 1-stage design: 2nd & 3rd harmonic controls Harmonic filter: high-Z for fund & 3rd-harmonic, low-Z for 2nd-harmonic OP-1dB: ~9.7 dBm, Psat: ~15 dBm PAE: max 29-30 %

60 GHz 1-Stage Class-F PA (VCC = 2.2V): Simulations PAEmax =29% S21 Pout (dBm) P-1dB = 9.7dBm S-parameter (dB) PAE (%) S22 S11 Freq (GHz) Pin (dBm) These are simulation results including layout sonnet EM-model. Single stage design has ~16 dBm Psat with 29-30% PAE.

60 GHz 1-Stage Class-F PA (VCC = 2.2V): Layout gnd VBB VCC gnd gnd gnd rfIn rfOut gnd gnd Size: 575μm x 410μm

60 GHz 2-Stage Class-F PA : Schematic Class-F, 2-stage design: 2nd & 3rd harmonic controls Harmonic filter: high-Z for fund & 3rd-harmonic, low-Z for 2nd-harmonic OP-1dB: ~15 dBm, Psat: ~16 dBm PAE: max 28-29 %

60 GHz 2-Stage Class-F PA : Simulations PAEmax =28.5% S21 P-1dB = 4.2dBm Pout (dBm) PAE (%) S-parameter (dB) S22 S11 Pin (dBm) Freq (GHz)

60 GHz 2-Stage Class-F PA : Layout VBB1 VCC1 gnd rfIn rfOut VBB2 VCC2 Size: 900μm x 400μm

33 GHz 1-Stage Class-F PA (VCC = 1.3V): Schematic Class-F, 1-stage design: 2nd & 3rd harmonic controls Harmonic filter: high-Z for fund & 3rd-harmonic, low-Z for 2nd-harmonic OP-1dB: ~11 dBm, Psat: ~10.5 dBm PAE: max 29-30 %

33 GHz 1-Stage Class-F PA (VCC = 1.3V): Simulations PAEmax =30% S21 Pout (dBm) PAE (%) P-1dB = 2.5dBm S-parameter (dB) S22 S11 Pin (dBm) Freq (GHz) These are simulation results including layout sonnet EM-model. Single stage design has ~10.5 dBm Psat with 29-30% PAE.

33 GHz 1-Stage Class-F PA (VCC = 1.3V): Layout gnd VBB VCC gnd gnd gnd rfIn rfOut gnd gnd Size: 615μm x 440μm

33 GHz 1-Stage Class-F PA (VCC = 2V): Schematic Class-F, 1-stage design: 2nd & 3rd harmonic controls Harmonic filter: high-Z for fund & 3rd-harmonic, low-Z for 2nd-harmonic OP-1dB: ~9.7 dBm, Psat: ~15 dBm PAE: max 29-30 %

33 GHz 1-Stage Class-F PA (VCC = 2V): Simulations PAEmax =40% S21 Pout (dBm) S-parameter (dB) P-1dB = 4dBm PAE (%) S22 S11 Freq (GHz) Pin (dBm) These are simulation results including layout sonnet EM-model. Single stage design has ~15 dBm Psat with 39-40% PAE.

33 GHz 1-Stage Class-F PA (VCC = 2V): Layout gnd VBB VCC gnd gnd gnd rfIn rfOut gnd gnd Size: 620μm x 440μm

60 GHz 1-Stage Class-F PA with coupled harmonic control: Schematics Class-F, 1-stage design: 2nd & 3rd harmonic controls Harmonic filter: high-Z for fund & 3rd-harmonic, low-Z for 2nd-harmonic OP-1dB: ~12.8 dBm, Psat: ~15 dBm PAE: max 25-26 %

60 GHz 1-Stage Class-F PA with coupled harmonic control: Simulations PAEmax =25.5% S21 Pout (dBm) P-1dB = 7.7dBm PAE (%) S-parameter (dB) S11 S22 Pin (dBm) Freq (GHz) These are simulation results including layout sonnet EM-model. Single stage design has ~15 dBm Psat with 25-26% PAE.

60 GHz 1-Stage Class-F PA with coupled harmonic control: Layout gnd VBB VCC gnd gnd gnd rfIn rfOut gnd gnd Size: 710μm x 410μm

33 GHz 1-Stage Class-F PA with coupled harmonic control: Schematics Harmonic filter Z-matching biasing Class-F, 1-stage design: 2nd & 3rd harmonic controls Harmonic filter: high-Z for fund & 3rd-harmonic, low-Z for 2nd-harmonic OP-1dB: ~12.8 dBm, Psat: ~15 dBm PAE: max 25-26 %

33 GHz 1-Stage Class-F PA with coupled harmonic control: Simulations PAEmax =32% S21 Pout (dBm) PAE (%) S-parameter (dB) P-1dB = 10.2dBm S22 S11 Pin (dBm) Freq (GHz) These are simulation results including layout sonnet EM-model. Single stage design has ~12.5 dBm Psat with 31-32% PAE.

33 GHz 1-Stage Class-F PA with coupled harmonic control: Layout gnd VBB VCC gnd gnd gnd rfIn rfOut gnd gnd Size: 670μm x 430μm

Utilizing 3rd H for efficiency (F3) Pdissp (mW) Pout (dBm) Pin (dBm) Pin (dBm) F3-filter F3-Harmonic Control AB F3-Harmonic Control F3-filter AB Vce (V) Ic (mA) PAE (%) time (ps)