GN/MAE155B1 Orbital Mechanics Overview 2 MAE 155B G. Nacouzi.

Slides:



Advertisements
Similar presentations
MAE 5410 – Astrodynamics Lecture 5 Orbit in Space Coordinate Frames and Time.
Advertisements

Dr. Andrew Ketsdever Lesson 3 MAE 5595
Space Engineering I – Part I
More Satellite Orbits Introduction to Space Systems and Spacecraft Design Space Systems Design.
ARO309 - Astronautics and Spacecraft Design Winter 2014 Try Lam CalPoly Pomona Aerospace Engineering.
Orbits: Select, Achieve, Determine, Change
Orbital Aspects of Satellite Communications
Introduction to Orbital Mechanics
Prince William Composite Squadron Col M. T. McNeely Presentation for AGI Users Conference CIVIL AIR PATROL PRESENTS The CAP-STK Aerospace Education Program.
Colorado Springs Cadet Squadron Lt Col M. T. McNeely Orbital Mechanics and other Space Operations Topics !! CIVIL AIR PATROL CAP-STK Aerospace Program.
Satellite Orbits Satellite Meteorology/Climatology Professor Menglin Jin.
Morehead State University Morehead, KY Prof. Bob Twiggs Understanding Orbits Assessment Questions
Halliday/Resnick/Walker Fundamentals of Physics 8th edition
AAE450 Spring 2009 Analysis of Trans-Lunar Spiral Trajectory [Levi Brown] [Mission Ops] February 12,
Slide 0 SP200, Block III, 1 Dec 05, Orbits and Trajectories UNCLASSIFIED The Two-body Equation of Motion Newton’s Laws gives us: The solution is an orbit.
GN/MAE1551 Orbital Mechanics Overview 3 MAE 155 G. Nacouzi.
GN/MAE155A1 Orbital Mechanics Overview MAE 155A Dr. George Nacouzi.
Dynamics I 15-nov-2006 E. Schrama If there is one thing that we understand very well about our solar system, then it is the way.
Physics 111: Elementary Mechanics – Lecture 12 Carsten Denker NJIT Physics Department Center for Solar–Terrestrial Research.
Orbital Mechanics Overview
Satellite Orbits 인공위성 궤도
Chpt. 5: Describing Orbits By: Antonio Batiste. If you’re flying an airplane and the ground controllers call you on the radio to ask where you are and.
COMETS, KUIPER BELT AND SOLAR SYSTEM DYNAMICS Silvia Protopapa & Elias Roussos Lectures on “Origins of Solar Systems” February 13-15, 2006 Part I: Solar.
Morehead State University Morehead, KY Prof. Bob Twiggs Understanding Orbits Orbit Facts 1.
Introduction to Satellite Motion
AT737 Satellite Orbits and Navigation 1. AT737 Satellite Orbits and Navigation2 Newton’s Laws 1.Every body will continue in its state of rest or of uniform.
Phases of the Moon. Spin and orbital frequencies.
Newton and Kepler. Newton’s Law of Gravitation The Law of Gravity Isaac Newton deduced that two particles of masses m 1 and m 2, separated by a distance.
SCIENCE PROGECT. The Earth Earth, which is our base from which we look into space, is constantly moving. Understanding this movement is one of the most.
Gravity & orbits. Isaac Newton ( ) developed a mathematical model of Gravity which predicted the elliptical orbits proposed by Kepler Semi-major.
ECE 5233 Satellite Communications Prepared by: Dr. Ivica Kostanic Lecture 2: Orbital Mechanics (Section 2.1) Spring 2014.
1 Satellite orbits. Where is the satellite ? May we see it ? Satellite geophysics,
CAP-STK Aerospace Program
Secular motion of artificial lunar satellites H. Varvoglis, S. Tzirti and K. Tsiganis Unit of Mechanics and Dynamics Department of Physics University of.
SLS-RFM_14-18 Orbital Considerations For A Lunar Comm Relay
航天动力学与控制 Lecture 年 2 月 4 General Rigid Body Motion –The concept of Rigid Body A rigid body can be defined as a system of particles whose relative.
Colorado Space Grant Consortium Gateway To Space ASEN / ASTR 2500 Class #15 Gateway To Space ASEN / ASTR 2500 Class #15.
Chapter 13 Gravitation. Newton’s law of gravitation Any two (or more) massive bodies attract each other Gravitational force (Newton's law of gravitation)
A SATELLITE CONSTELLATION TO OBSERVE THE SPECTRAL RADIANCE SHELL OF EARTH Stanley Q. Kidder and Thomas H. Vonder Haar Cooperative Institute for Research.
A Brief Introduction to Astrodynamics
ASTRONOMY 340 FALL 2007 Class #2 6 September 2007.
ORBITAL MECHANICS FOR THERMAL ENGINEERS
General Motion Rest: Quasars Linear: Stars Keplerian: Binary Perturbed Keplerian: Asteroids, Satellites Complex: Planets, Space Vehicles Rotational: Earth,
Chapter 5 Satellite orbits Remote Sensing of Ocean Color Instructor: Dr. Cheng-Chien LiuCheng-Chien Liu Department of Earth Science National Cheng-Kung.
Space platform and Orbits Introduction to Remote Sensing Instructor: Dr. Cheng-Chien LiuCheng-Chien Liu Department of Earth Sciences National Cheng Kung.
UNCLASSIFIEDUNCLASSIFIED Lesson 2 Basic Orbital Mechanics A537 SPACE ORIENTATION A537 SPACE ORIENTATION.
ASEN 5070: Statistical Orbit Determination I Fall 2014
University of Colorado Boulder ASEN 5070: Statistical Orbit Determination I Fall 2015 Professor Brandon A. Jones Lecture 3: Time and Coordinate Systems.
Gravity Summary For a point source or for a homogeneous sphere the solution is easy to compute and are given by the Newton’s law. Gravity Force for the.
Sea Launch/Zenit Thrust: 8,180,000 N Fueled Weight: 450,000 kg Payload to LEO: 13,740 kg Cost per launch: $100,000,000 Cost per kg: $7,300 Launches: 31/28.
SATELLITE ORBITS The monitoring capabilities of the sensor are, to a large extent, governed by the parameters of the satellite orbit. Different types of.
Categories of Satellites
University of Colorado Boulder ASEN 5070: Statistical Orbit Determination I Fall 2015 Professor Brandon A. Jones Lecture 2: Basics of Orbit Propagation.
Introduction to On-Orbit Thermal Environments
Colorado Springs Cadet Squadron Lt Col M. T. McNeely ORBITAL MECHANICS !! INTRO TO SPACE COURSE.
Introduction to satellite orbits Carla Braitenberg Si ringrazia: Peter Wisser, Delft University Monitoraggio Geodetico e Telerilevamento
1 The law of gravitation can be written in a vector notation (9.1) Although this law applies strictly to particles, it can be also used to real bodies.
AE Review Orbital Mechanics.
Celestial Mechanics VII
Aircraft Communication Type 1Satellites and radars AUL-Jadra.
Deployment Optimization for Various Gravitational Wave Missions
Lunar Trajectories.
Space Mechanics.
SLS-RFM_14-18 Orbital Considerations For A Lunar Comm Relay
Astronomy 340 Fall 2005 Class #3 13 September 2005.
Satellite Orbits An Introduction to Orbital Mechanics
Basic Orbital Mechanics
Orbit in Space Coordinate Frames and Time
BASIC ORBIT MECHANICS.
9. Gravitation 9.1. Newton’s law of gravitation
Presentation transcript:

GN/MAE155B1 Orbital Mechanics Overview 2 MAE 155B G. Nacouzi

GN/MAE155B2 Orbital Mechanics Overview 2 Summary of first quarter overview –Keplerian motion –Classical orbit parameters Orbital perturbations Central body observation –Coverage examples using Excel Project workshop

GN/MAE155B3 Introduction: Orbital Mechanics Motion of satellite is influenced by the gravity field of multiple bodies, however, two body assumption is usually sufficient. Earth orbiting satellite Two Body approach: –Central body is earth, assume it has only gravitational influence on S/C, assume M >> m (M, m ~ mass of earth & S/C) Gravity effects of secondary bodies including sun, moon and other planets in solar system are ignored Gravitational potential function is given by:  = GM/r –Solution assumes bodies are spherically symmetric, point sources ( Earth oblateness not accounted for) –Only gravity and centrifugal forces are present

GN/MAE155B4 Two Body Motion (or Keplerian Motion) Closed form solution for 2 body exists, no explicit soltn exists for N >2, numerical approach needed Gravitational field on body is given by: F g = M m G/R 2 where, M~ Mass of central body; m~ Mass of Satellite G~ Universal gravity constant R~ distance between centers of bodies For a S/C in Low Earth Orbit (LEO), the gravity forces are: Earth: 0.9 g Sun: 6E-4 g Moon: 3E-6 g Jupiter: 3E-8 g

GN/MAE155B5 Elliptical Orbit Geometry & Nomenclature Periapsis Apoapsis Line of Apsides R ac V Rp b Line of Apsides connects Apoapsis, central body & Periapsis Apogee~ Apoapsis; Perigee~ Periapsis (earth nomenclature) S/C position defined by R &, is called true anomaly R = [Rp (1+e)]/[1+ e cos( )]

GN/MAE155B6 Elliptical Orbit Definition Orbit is defined using the 6 classical orbital elements: –Eccentricity, –semi-major axis, –true anomaly: position of SC on the orbit –inclination, i, is the angle between orbit plane and equatorial plane –Argument of Periapsis (  ). Angle from Ascending Node (AN) to Periapsis. AN: Pt where S/C crosses equatorial plane South to North - Longitude of Ascending Node (  )~Angle from Vernal Equinox (vector from center of earth to sun on first day of spring) and ascending node i Vernal Equinox   Ascending Node Periapsis

GN/MAE155B7 Sources of Orbital Perturbations Several external forces cause perturbation to spacecraft orbit –3rd body effects, e.g., sun, moon, other planets –Unsymmetrical central bodies (‘oblateness’ caused by rotation rate of body): Earth: Requator = 6378 km, Rpolar = 6357 km –Space Environment: Solar Pressure, drag from rarefied atmosphere Reference: C. Brown, ‘Elements of SC Design’

GN/MAE155B8 Relative Importance of Orbit Perturbations J2 term accounts for effect from oblate earth Principal effect above 100 km altitude Other terms may also be important depending on application, mission, etc... Reference: Spacecraft Systems Engineering, Fortescue & Stark

GN/MAE155B9 Principal Orbital Perturbations Earth ‘oblateness’ results in an unsymmetric gravity potential given by: where a e = equatorial radius, P n ~ Legendre Polynomial J n ~ zonal harmonics, w ~ sin (SC declination) J2 term causes measurable perturbation which must be accounted for. Main effects: –Regression of nodes –Rotation of apsides Note: J2~1E-3, J3~1E-6

GN/MAE155B10 Orbital Perturbation Effects: Regression of Nodes Regression of Nodes: Equatorial bulge causes component of gravity vector acting on SC to be slightly out of orbit plane This out of orbit plane component causes a slight precession of the orbit plane. The resulting orbital rotation is called regression of nodes and is approximated using the dominant gravity harmonics term, J2

GN/MAE155B11 Regression of Nodes Regression of nodes is approximated by: Where,  ~ Longitude of the ascending node; R~ Mean equatorial radius J 2 ~ Zonal coeff.(for earth = ) n ~ mean motion (sqrt(GM/a 3 )), a~ semimajor axis Note: Although regression rate is small for Geo., it is cumulative and must be accounted for

GN/MAE155B12 Orbital Perturbation: Rotation of Apsides  Rotation of apsides caused by earth oblateness is similar to regression of nodes. The phenomenon is caused by a higher acceleration near the equator and a resulting overshoot at periapsis. This only occurs in elliptical orbits. The rate of rotation is given by:

GN/MAE155B13 Ground Track Defined as the trace of nadir positions, as a function of time, on the central body. Ground track is influenced by: –S/C orbit –Rotation of central body –Orbit perturbations Trace is calculated using spherical trigonometry (no perturbances) sin (La) = sin (i) sin A La Lo =  + asin(tan (La)/tan(i))+Re where: A la ~  (ascending node to SC)  ~ Longitude of ascending node I ~ Inclination Re~Earth rotation rate= t (add to west. longitudes, subtract for eastern longitude)

GN/MAE155B14 Example Ground Trace

GN/MAE155B15 Spacecraft Horizon SC horizon forms a circle on the spherical surface of the central body, within circle: –SC can be seen from central body –Line of sight communication can be established –SC can observe the central body

GN/MAE155B16 Central Body Observation From simple trigonometry: sin(  h ) = Rs/(Rs+hs) D h = (Rs+hs) cos(  h ) Sw~ Swath width = 2  h Rs