PrasadL18SVM1 Support Vector Machines Adapted from Lectures by Raymond Mooney (UT Austin)

Slides:



Advertisements
Similar presentations
Introduction to Support Vector Machines (SVM)
Advertisements

Support Vector Machines
Lecture 9 Support Vector Machines
ECG Signal processing (2)
Image classification Given the bag-of-features representations of images from different classes, how do we learn a model for distinguishing them?
CS276A Text Retrieval and Mining Lecture 17 [Borrows some slides from Ray Mooney]
Support Vector Machine & Its Applications Abhishek Sharma Dept. of EEE BIT Mesra Aug 16, 2010 Course: Neural Network Professor: Dr. B.M. Karan Semester.
S UPPORT V ECTOR M ACHINES Jianping Fan Dept of Computer Science UNC-Charlotte.
Support Vector Machine & Its Applications Mingyue Tan The University of British Columbia Nov 26, 2004 A portion (1/3) of the slides are taken from Prof.
SVM - Support Vector Machines A new classification method for both linear and nonlinear data It uses a nonlinear mapping to transform the original training.
An Introduction of Support Vector Machine
Text Categorization Moshe Koppel Lecture 1: Introduction Slides based on Manning, Raghavan and Schutze and odds and ends from here and there.
Linear Classifiers/SVMs
An Introduction of Support Vector Machine
Support Vector Machines
1 Lecture 5 Support Vector Machines Large-margin linear classifier Non-separable case The Kernel trick.
Support vector machine
Machine learning continued Image source:
Discriminative and generative methods for bags of features
Support Vector Machines (and Kernel Methods in general)
Image classification Given the bag-of-features representations of images from different classes, how do we learn a model for distinguishing them?
University of Texas at Austin Machine Learning Group Department of Computer Sciences University of Texas at Austin Support Vector Machines.
1 Classification: Definition Given a collection of records (training set ) Each record contains a set of attributes, one of the attributes is the class.
Support Vector Machines
Lecture 10: Support Vector Machines
SVMs, cont’d Intro to Bayesian learning. Quadratic programming Problems of the form Minimize: Subject to: are called “quadratic programming” problems.
Support Vector Machines Piyush Kumar. Perceptrons revisited Class 1 : (+1) Class 2 : (-1) Is this unique?
This week: overview on pattern recognition (related to machine learning)
PrasadL15SVM1 Support Vector Machines Adapted from Lectures by Raymond Mooney (UT Austin) and Andrew Moore (CMU)
Support Vector Machine & Image Classification Applications
Support Vector Machines Mei-Chen Yeh 04/20/2010. The Classification Problem Label instances, usually represented by feature vectors, into one of the predefined.
INTRODUCTION TO ARTIFICIAL INTELLIGENCE Massimo Poesio LECTURE: Support Vector Machines.
计算机学院 计算感知 Support Vector Machines. 2 University of Texas at Austin Machine Learning Group 计算感知 计算机学院 Perceptron Revisited: Linear Separators Binary classification.
SVM Support Vector Machines Presented by: Anas Assiri Supervisor Prof. Dr. Mohamed Batouche.
Machine Learning in Ad-hoc IR. Machine Learning for ad hoc IR We’ve looked at methods for ranking documents in IR using factors like –Cosine similarity,
Classifiers Given a feature representation for images, how do we learn a model for distinguishing features from different classes? Zebra Non-zebra Decision.
Text Classification 2 David Kauchak cs459 Fall 2012 adapted from:
Kernels Usman Roshan CS 675 Machine Learning. Feature space representation Consider two classes shown below Data cannot be separated by a hyperplane.
CS 478 – Tools for Machine Learning and Data Mining SVM.
Kernel Methods: Support Vector Machines Maximum Margin Classifiers and Support Vector Machines.
Ohad Hageby IDC Support Vector Machines & Kernel Machines IP Seminar 2008 IDC Herzliya.
An Introduction to Support Vector Machine (SVM)
University of Texas at Austin Machine Learning Group Department of Computer Sciences University of Texas at Austin Support Vector Machines.
Support vector machine LING 572 Fei Xia Week 8: 2/23/2010 TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A 1.
Support Vector Machine Debapriyo Majumdar Data Mining – Fall 2014 Indian Statistical Institute Kolkata November 3, 2014.
1  Problem: Consider a two class task with ω 1, ω 2   LINEAR CLASSIFIERS.
Support Vector Machines Tao Department of computer science University of Illinois.
Text Classification using Support Vector Machine Debapriyo Majumdar Information Retrieval – Spring 2015 Indian Statistical Institute Kolkata.
Support Vector Machines Reading: Ben-Hur and Weston, “A User’s Guide to Support Vector Machines” (linked from class web page)
Kernel Methods: Support Vector Machines Maximum Margin Classifiers and Support Vector Machines.
Support Vector Machine: An Introduction. (C) by Yu Hen Hu 2 Linear Hyper-plane Classifier For x in the side of o : w T x + b  0; d = +1; For.
An Introduction of Support Vector Machine In part from of Jinwei Gu.
Roughly overview of Support vector machines Reference: 1.Support vector machines and machine learning on documents. Christopher D. Manning, Prabhakar Raghavan.
A Brief Introduction to Support Vector Machine (SVM) Most slides were from Prof. A. W. Moore, School of Computer Science, Carnegie Mellon University.
Text Classification and Naïve Bayes Text Classification: Evaluation.
An Introduction of Support Vector Machine Courtesy of Jinwei Gu.
Support Vector Machine Slides from Andrew Moore and Mingyue Tan.
Support Vector Machines
PREDICT 422: Practical Machine Learning
Support Vector Machines
Support Vector Machines
An Introduction to Support Vector Machines
Support Vector Machines
Statistical Learning Dong Liu Dept. EEIS, USTC.
CS 2750: Machine Learning Support Vector Machines
COSC 4335: Other Classification Techniques
Support Vector Machines
SVMs for Document Ranking
MIRA, SVM, k-NN Lirong Xia. MIRA, SVM, k-NN Lirong Xia.
Support Vector Machines 2
Presentation transcript:

PrasadL18SVM1 Support Vector Machines Adapted from Lectures by Raymond Mooney (UT Austin)

2 Text classification Earlier: Algorithms for text classification K Nearest Neighbor classification Simple, expensive at test time, high variance, non-linear Vector space classification using centroids and hyperplanes that split them Simple, linear classifier; perhaps too simple Today SVMs Some empirical evaluation and comparison Text-specific issues in classification

3 Linear classifiers: Which Hyperplane? Lots of possible solutions for a,b,c. Some methods find a separating hyperplane, but not the optimal one [according to some criterion of expected goodness] E.g., perceptron Support Vector Machine (SVM) finds an optimal solution. Maximizes the distance between the hyperplane and the “difficult points” close to decision boundary Intuition: if there are no points near the decision surface, then there are no very uncertain classification decisions This line represents the decision boundary: ax + by - c = 0

4 Another intuition If you have to place a fat separator between classes, you have less choices, and so the capacity of the model has been decreased

5 Support Vector Machine (SVM) Support vectors Maximize margin SVMs maximize the margin around the separating hyperplane. A.k.a. large margin classifiers The decision function is fully specified by a subset of training samples, the support vectors. Quadratic programming problem Seen by many as most successful current text classification method

6 w: decision hyperplane normal x i : data point i y i : class of data point i (+1 or -1) NB: Not 1/0 Classifier is: f(x i ) = sign(w T x i + b) Functional margin of x i is: y i (w T x i + b) But note that we can increase this margin simply by scaling w, b…. Functional margin of dataset is minimum functional margin for any point Maximum Margin: Formalization

7 The planar decision surface in data-space for the simple linear discriminant function:

8 Geometric Margin Distance from example to the separator is Examples closest to the hyperplane are support vectors. Margin ρ of the separator is the width of separation between support vectors of classes. r ρ x x′x′

9 Linear SVM Mathematically Assume that all data is at least distance 1 from the hyperplane, then the following two constraints follow for a training set {(x i,y i )} For support vectors, the inequality becomes an equality Then, since each example’s distance from the hyperplane is The margin is: w T x i + b ≥ 1 if y i = 1 w T x i + b ≤ -1 if y i = -1

10 Linear Support Vector Machine (SVM) Hyperplane w T x + b = 0 Extra scale constraint: min i=1,…,n |w T x i + b| = 1 This implies: w T (x a –x b ) = 2 ρ = ||x a –x b || 2 = 2/||w|| 2 w T x + b = 0 w T x a + b = 1 w T x b + b = -1 ρ

11 Linear SVMs Mathematically (cont.) Then we can formulate the quadratic optimization problem: A better formulation (min ||w|| = max 1/ ||w|| ): Find w and b such that is maximized; and for all { ( x i, y i )} w T x i + b ≥ 1 if y i =1; w T x i + b ≤ -1 if y i = -1 Find w and b such that Φ(w) =½ w T w is minimized; and for all { ( x i,y i )} : y i (w T x i + b) ≥ 1

12 Non-linear SVMs Datasets that are linearly separable (with some noise) work out great: But what are we going to do if the dataset is just too hard? How about … mapping data to a higher-dimensional space: 0 x2x2 x 0 x 0 x

13 Nonlinear SVMs: The Clever Bit! Project the linearly inseparable data to high dimensional space where it is linearly separable and then we can use linear SVM (1,0) (0,0) (0,1) + + -

Not linearly separable data. Need to transform the coordinates: polar coordinates, kernel transformation into higher dimensional space (support vector machines). Distance from center (radius) Angular degree (phase) Linearly separable data. polar coordinates

15 Non-linear SVMs: Feature spaces Φ: x → φ(x)

16 (cont’d) Kernel functions and the kernel trick are used to transform data into a different linearly separable feature space  (.)  ( ) Feature space Input space

17 Mathematical Details : SKIP

18 Solving the Optimization Problem This is now optimizing a quadratic function subject to linear constraints Quadratic optimization problems are a well-known class of mathematical programming problems, and many (rather intricate) algorithms exist for solving them The solution involves constructing a dual problem where a Lagrange multiplier α i is associated with every constraint in the primary problem: Find w and b such that Φ(w) =½ w T w is minimized; and for all { ( x i,y i )} : y i (w T x i + b) ≥ 1 Find α 1 …α N such that Q( α ) = Σ α i - ½ ΣΣ α i α j y i y j x i T x j is maximized and (1) Σ α i y i = 0 (2) α i ≥ 0 for all α i

19 The Optimization Problem Solution The solution has the form: Each non-zero α i indicates that corresponding x i is a support vector. Then the classifying function will have the form: Notice that it relies on an inner product between the test point x and the support vectors x i. Also keep in mind that solving the optimization problem involved computing the inner products x i T x j between all pairs of training points. w = Σ α i y i x i b= y k - w T x k for any x k such that α k  0 f(x) = Σ α i y i x i T x + b

20 Soft Margin Classification If the training set is not linearly separable, slack variables ξ i can be added to allow misclassification of difficult or noisy examples. Allow some errors Let some points be moved to where they belong, at a cost Still, try to minimize training set errors, and to place hyperplane “far” from each class (large margin) ξjξj ξiξi

21 Soft Margin Classification Mathematically The old formulation: The new formulation incorporating slack variables: Parameter C can be viewed as a way to control overfitting – a regularization term Find w and b such that Φ(w) =½ w T w is minimized and for all { ( x i,y i )} y i (w T x i + b) ≥ 1 Find w and b such that Φ(w) =½ w T w + C Σ ξ i is minimized and for all { ( x i,y i )} y i (w T x i + b) ≥ 1- ξ i and ξ i ≥ 0 for all i

22 Soft Margin Classification – Solution The dual problem for soft margin classification: Neither slack variables ξ i nor their Lagrange multipliers appear in the dual problem! Again, x i with non-zero α i will be support vectors. Solution to the dual problem is: Find α 1 …α N such that Q( α ) = Σ α i - ½ ΣΣ α i α j y i y j x i T x j is maximized and (1) Σ α i y i = 0 (2) 0 ≤ α i ≤ C for all α i w = Σ α i y i x i b= y k (1- ξ k ) - w T x k where k = argmax α k k f(x) = Σ α i y i x i T x + b But w not needed explicitly for classification!

23 Classification with SVMs Given a new point (x 1,x 2 ), we can score its projection onto the hyperplane normal: In 2 dims: score = w 1 x 1 +w 2 x 2 +b. I.e., compute score: wx + b = Σα i y i x i T x + b Set confidence threshold t Score > t: yes Score < -t: no Else: don’t know

24 Linear SVMs: Summary The classifier is a separating hyperplane. Most “important” training points are support vectors; they define the hyperplane. Quadratic optimization algorithms can identify which training points x i are support vectors with non-zero Lagrangian multipliers α i. Both in the dual formulation of the problem and in the solution training points appear only inside inner products: Find α 1 …α N such that Q( α ) = Σ α i - ½ ΣΣ α i α j y i y j x i T x j is maximized and (1) Σ α i y i = 0 (2) 0 ≤ α i ≤ C for all α i f(x) = Σ α i y i x i T x + b

25 Non-linear SVMs: Feature spaces General idea: the original feature space can always be mapped to some higher-dimensional feature space where the training set is separable: Φ: x → φ(x)

26 The “Kernel Trick” The linear classifier relies on an inner product between vectors K(x i,x j )=x i T x j If every datapoint is mapped into high-dimensional space via some transformation Φ: x → φ(x), the inner product becomes: K(x i,x j )= φ(x i ) T φ(x j ) A kernel function is some function that corresponds to an inner product in some expanded feature space. Example: 2-dimensional vectors x=[x 1 x 2 ]; let K(x i,x j )=(1 + x i T x j ) 2, Need to show that K(x i,x j )= φ(x i ) T φ(x j ): K(x i,x j )=(1 + x i T x j ) 2, = 1+ x i1 2 x j x i1 x j1 x i2 x j2 + x i2 2 x j x i1 x j1 + 2x i2 x j2 = = [1 x i1 2 √2 x i1 x i2 x i2 2 √2x i1 √2x i2 ] T [1 x j1 2 √2 x j1 x j2 x j2 2 √2x j1 √2x j2 ] = φ(x i ) T φ(x j ) where φ(x) = [1 x 1 2 √2 x 1 x 2 x 2 2 √2x 1 √2x 2 ]

27 Kernels Why use kernels? Make non-separable problem separable. Map data into better representational space Common kernels Linear Polynomial K(x,z) = (1+x T z) d Radial basis function (infinite dimensional space)

28 Most (over)used data set documents 9603 training, 3299 test articles (ModApte split) 118 categories An article can be in more than one category Learn 118 binary category distinctions Average document: about 90 types, 200 tokens Average number of classes assigned 1.24 for docs with at least one category Only about 10 out of 118 categories are large Common categories (#train, #test) Evaluation: Classic Reuters Data Set Earn (2877, 1087) Acquisitions (1650, 179) Money-fx (538, 179) Grain (433, 149) Crude (389, 189) Trade (369,119) Interest (347, 131) Ship (197, 89) Wheat (212, 71) Corn (182, 56)

29 Reuters Text Categorization data set (Reuters-21578) document 2-MAR :51:43.42 livestock hog AMERICAN PORK CONGRESS KICKS OFF TOMORROW CHICAGO, March 2 - The American Pork Congress kicks off tomorrow, March 3, in Indianapolis with 160 of the nations pork producers from 44 member states determining industry positions on a number of issues, according to the National Pork Producers Council, NPPC. Delegates to the three day Congress will be considering 26 resolutions concerning various issues, including the future direction of farm policy and the tax law as it applies to the agriculture sector. The delegates will also debate whether to endorse concepts of a national PRV (pseudorabies virus) control and eradication program, the NPPC said. A large trade show, in conjunction with the congress, will feature the latest in technology in all areas of the industry, the NPPC added. Reuter

30 New Reuters: RCV1: 810,000 docs Top topics in Reuters RCV1

31 Per class evaluation measures Recall: Fraction of docs in class i classified correctly: Precision: Fraction of docs assigned class i that are actually about class i: “Correct rate”: (1- error rate) Fraction of docs classified correctly:

32 Dumais et al. 1998: Reuters - Accuracy Recall: % labeled in category among those stories that are really in category Precision: % really in category among those stories labeled in category Break Even: (Recall + Precision) / 2

33 Reuters ROC - Category Grain Precision Recall LSVM Decision Tree Naïve Bayes Find Similar Recall: % labeled in category among those stories that are really in category Precision: % really in category among those stories labeled in category

34 ROC for Category - Crude LSVM Decision Tree Naïve Bayes Find Similar Precision Recall

35 ROC for Category - Ship LSVM Decision Tree Naïve Bayes Find Similar Precision Recall

36 Results for Kernels (Joachims 1998)

37 Summary Support vector machines (SVM) Choose hyperplane based on support vectors Support vector = “critical” point close to decision boundary (Degree-1) SVMs are linear classifiers. Kernels: powerful and elegant way to define similarity metric Perhaps best performing text classifier