Ch.4 Fourier Analysis of Discrete-Time Signals

Slides:



Advertisements
Similar presentations
DCSP-12 Jianfeng Feng
Advertisements

DCSP-13 Jianfeng Feng Department of Computer Science Warwick Univ., UK
DCSP-11 Jianfeng Feng
ECE 8443 – Pattern Recognition EE 3512 – Signals: Continuous and Discrete Objectives: Response to a Sinusoidal Input Frequency Analysis of an RC Circuit.
Symmetry and the DTFT If we know a few things about the symmetry properties of the DTFT, it can make life simpler. First, for a real-valued sequence x(n),
LECTURE Copyright  1998, Texas Instruments Incorporated All Rights Reserved Use of Frequency Domain Telecommunication Channel |A| f fcfc Frequency.
Engineering Mathematics Class #15 Fourier Series, Integrals, and Transforms (Part 3) Sheng-Fang Huang.
1 Chapter 16 Fourier Analysis with MATLAB Fourier analysis is the process of representing a function in terms of sinusoidal components. It is widely employed.
Chapter 8: The Discrete Fourier Transform
Signals & systems Ch.3 Fourier Transform of Signals and LTI System
Lecture 8: Fourier Series and Fourier Transform
Discrete-Time Fourier Methods
Signals and Systems Discrete Time Fourier Series.
Chapter 4 The Fourier Series and Fourier Transform
Continuous Time Signals All signals in nature are in continuous time.
Discrete Time Periodic Signals A discrete time signal x[n] is periodic with period N if and only if for all n. Definition: Meaning: a periodic signal keeps.
Chapter 4 The Fourier Series and Fourier Transform.
Chapter 15 Fourier Series and Fourier Transform
Systems: Definition Filter
Discrete-Time Fourier Series
Discrete-Time and System (A Review)
Fourier Analysis of Systems Ch.5 Kamen and Heck. 5.1 Fourier Analysis of Continuous- Time Systems Consider a linear time-invariant continuous-time system.
1 Chapter 8 The Discrete Fourier Transform 2 Introduction  In Chapters 2 and 3 we discussed the representation of sequences and LTI systems in terms.
Chapter 2: Discrete time signals and systems
Fourier Transforms Section Kamen and Heck.
The Discrete Fourier Transform. The Fourier Transform “The Fourier transform is a mathematical operation with many applications in physics and engineering.
Fourier Series Summary (From Salivahanan et al, 2002)
ECE 8443 – Pattern Recognition ECE 3163 – Signals and Systems Objectives: Introduction to the IEEE Derivation of the DFT Relationship to DTFT DFT of Truncated.
1 The Fourier Series for Discrete- Time Signals Suppose that we are given a periodic sequence with period N. The Fourier series representation for x[n]
Discrete Fourier Transform Prof. Siripong Potisuk.
Signal and Systems Prof. H. Sameti Chapter 5: The Discrete Time Fourier Transform Examples of the DT Fourier Transform Properties of the DT Fourier Transform.
Fourier Series. Introduction Decompose a periodic input signal into primitive periodic components. A periodic sequence T2T3T t f(t)f(t)
1 Fourier Representations of Signals & Linear Time-Invariant Systems Chapter 3.
1 Fourier Representation of Signals and LTI Systems. CHAPTER 3 School of Computer and Communication Engineering, UniMAP Hasliza A Samsuddin EKT.
Signals & systems Ch.3 Fourier Transform of Signals and LTI System 5/30/2016.
Zhongguo Liu_Biomedical Engineering_Shandong Univ. Chapter 8 The Discrete Fourier Transform Zhongguo Liu Biomedical Engineering School of Control.
Basic Operation on Signals Continuous-Time Signals.
Fourier series: Eigenfunction Approach
Fourier Series Kamen and Heck.
Spatial Frequencies Spatial Frequencies. Why are Spatial Frequencies important? Efficient data representation Provides a means for modeling and removing.
Fourier Analysis of Discrete Time Signals
Chapter 2. Signals and Linear Systems
Fourier series, Discrete Time Fourier Transform and Characteristic functions.
ECE 8443 – Pattern Recognition EE 3512 – Signals: Continuous and Discrete Objectives: Derivation of the DFT Relationship to DTFT DFT of Truncated Signals.
Fourier Representation of Signals and LTI Systems.
1 Fourier Representation of Signals and LTI Systems. CHAPTER 3 UniMAP.
Frequency domain analysis and Fourier Transform
1 Fourier Representation of Signals and LTI Systems. CHAPTER 3 School of Computer and Communication Engineering, UniMAP Amir Razif B. Jamil Abdullah EKT.
بسم الله الرحمن الرحيم Digital Signal Processing Lecture 3 Review of Discerete time Fourier Transform (DTFT) University of Khartoum Department of Electrical.
بسم الله الرحمن الرحيم Lecture (12) Dr. Iman Abuel Maaly The Discrete Fourier Transform Dr. Iman Abuel Maaly University of Khartoum Department of Electrical.
DSP First, 2/e Lecture 18 DFS: Discrete Fourier Series, and Windowing.
Signals & systems Ch.3 Fourier Transform of Signals and LTI System
CE Digital Signal Processing Fall Discrete-time Fourier Transform
Digital Signal Processing Lecture 4 DTFT
The Discrete Fourier Transform
UNIT II Analysis of Continuous Time signal
4.1 DFT In practice the Fourier components of data are obtained by digital computation rather than by analog processing. The analog values have to be.
Chapter 8 The Discrete Fourier Transform
Sampling the Fourier Transform
Discrete-Time Fourier Transform
Lecture 18 DFS: Discrete Fourier Series, and Windowing
Lecture 17 DFT: Discrete Fourier Transform
Lecture 15 DTFT: Discrete-Time Fourier Transform
CT-321 Digital Signal Processing
Chapter 8 The Discrete Fourier Transform
Chapter 8 The Discrete Fourier Transform
Continuous-Time Fourier Transform
Signals and Systems Lecture 15
Lec.6:Discrete Fourier Transform and Signal Spectrum
Presentation transcript:

Ch.4 Fourier Analysis of Discrete-Time Signals Kamen and Heck

4.1 Discrete-Time Fourier Transform X() = n=-, x[n] e -jn (Eq. 4.1) Complex valued function of real variable , the frequency. A sufficient condition for x[n] to have a DTFT in the ordinary sense is that x[n] be absolutely summable.

Example 4.1 Computation of the DTFT Consider x[n] = an, 0nq and 0 otherwise. The DTFT is X() = n=-, x[n] e -jn = n=0,q an e -jn = n=0,q (ae -j)n = [1 – (ae -j)q+1 ] / [1- (ae -j)] (where the closed form expression for a partial sum exponential is used—(Eq.4.5)

4.1 Discrete-Time Fourier Transform (cont.) X() is a periodic function of  with period 2. Rectangular Form: X() = R() + jI(). R() = n=-, x[n] cos(n) I() = - n=-, x[n] sin(n) Polar Form: X() = |X()| +exp[j X()]. |X()| = SQRT[R2() + I2()]. X()=tan-1[I()/ R()] when R()  0 =  + tan-1[I()/ R()] when R() < 0

Example 4.2 Rectangular and Polar Forms Consider x[n] = an u(n). This is similar to Ex. 4.1 except we have q. Consider the DTFT from Ex. 4.1 but let q: X() = lim q [1 – (ae -j)q+1 ] / [1- (ae -j)] This limit exists for |a| < 1. For this case, the DTFT exists in the ordinary sense. X() = 1/ [1- (ae -j)] (Eq. 4.16) The rectangular and polar forms are shown on pages 170-171.

4.1.1 Signals with Even or Odd Symmetry Let x[n] be a real-valued discrete-time signal that is an even function (ie, x[n] = x[-n].) The DTFT is X()= x[0] + n=1, 2x[n] cos(n) Let x[n] be an odd function (ie,x[n]=-x[-n]) The DTFT is X()= x[0] - n=1, j2x[n]sin(n)

Example 4.3 DTFT of Rectangular Pulse Let p[n] = 1 for -q n  q and 0 elsewhere. The signal is even but it is easier to use 4.2. P() = n=-q,q e -jn =[ e jq – e -j(q+1) ] / [1- e -j ] = sin[(q + 1/2) ]/[sin(/2)] This is the discrete-time counterpart to the transform of the rectangular pulse (Ex. 3.9). Figure 4.3 illustrates the DTFT.

4.1.2 Spectrum of a Discrete-Time Signal For simplification, the discrete-time Fourier series is not discussed. For a discrete time signal that is not a function of sinusoids the spectrum is a continuum of frequency components. The frequency spectrum is made up of the amplitude spectrum and the phase spectrum. The highest value of  = .

Example 4.4 Decaying Exponential Assume that x[n] = (.5)n u(n). The signal is plotted in Fig. 4.1. The spectrum is shown in Figure 4.2 Note that most of the spectrum is in the lower frequencies.

Example 4.5 Signal with High-Frequency Components Consider x[n] = (-.5)n u(n). From Figure 4.4 we see that there should be higher frequency components in this signal. From the result of Ex 4.2, the DTFT is: X() = 1/ [1- (-.5e -j)] = 1/ [1 + .5e -j] The amplitude and phase spectra are given by equations 4.25 and 4.26 and plotted in Figure 4.5.

4.1.3 Inverse DTFT x[n] = 1/2 02 X() e jn d (Eq. 4.7)

4.1.4 Generalized DTFT Example 4.6 DTFT of a Constant Signal Let x[n] =1 for all n. This signal does not have a DTFT in the ordinary sense—(Why?) Figure 4.6 shows the generalized DTFT. Discussion on page 176 illustrates that its inverse is the constant signal.

DTFT Transform Pairs and Properties 4.1.5 Transform Pairs—Table 4.1 page 177. Properties—Table 4.2 page 178. No duality property, but there is a relationship between the inverse of the CTFT and the DTFT. Result can be used to generate DTFT pairs from CTFT pairs—see Example 4.7.

4.2 Discrete Fourier Transform Let x[n] be a discrete-time signal. Let X() is the DTFT of x[n]. Note: the DTFT is a continuous function of . Let N be a positive integer, then the DFT of x[n] is: Xk = n=0,N-1 x[n] e -j2kn/N , k=0,1,2,…N-1

4.2 The DFT (p.2) In general, Xk is a function of the discrete integer k. There are N values in the DFT of x[n]. These values are complex numbers. Polar form: Xk = |Xk| exp [jXk] Rectangular form: Xk = Rk + jIk See equations 4.36, 4.37. MATLAB—program on page 180.

4.2 The DFT (p.3) Example 4.8 Computation of the DFT 4.2.1 Symmetry Finite sequence –page 181. 4.2.1 Symmetry Magnitude of the DFT is symmetric about N/2, for N even. Phase angle of the DFT has odd symmetry about N/2 when N is even. 4.2.2 Inverse DFT—see equation 4.40 and MATLAB program and Example 4.9 on page 183.

The DFT (p.4) 4.2.3 Sinusoidal Form 4.2.4 Relationship to DTFT The right hand side of the IDFT equation can be written as sinusoids. See equation 4.45 and Example 4.10. 4.2.4 Relationship to DTFT If x[n] = 0 for n<0 and n  N, the DFT Xk can be viewed as a freqeuency sample version of the DTFT. Xk =X() =2k/N = X(2k/N ), k = 0,1,2,…,N-1

Example 4.11 DTFT and DFT of a Pulse Consider p[n] from example 4.3. Let x[n] be p[n-q]. Figure 4.10 shows the amplitude spectrum for q=5. Figure 4.11 shows the amplitude of the DFT for q=5 and N= 22. Figure 4.12 shows the amplitude of the DFT for q=5 and N = 88.

4.4 FFT Algorithm Consider the DFT and Inverse DFT: Xk = Σn=0,1,…,N-1 x[n] e -j2kn/N k=0,1,…,N-1 x[n]= (1/N ) Σk=0,…,N-1 Xk e j2kn/N, n=0,…,N-1 How many multiplications are needed to compute the DFT? (N2) The FFT algorithm requires N(log2N)/2 multiplications.

4.4 FFT Algorithm (p.2) If N = 1024, DFT requires 1,048,576 multiplications FFT requires 5,120 multiplications There are different variations of the FFT algorithm. One uses “decimation-in-time”.

4.4 FFT (p.3) Decimation-in-Time Subdivide the time interval into intervals having a smaller number of points.

4.4 FFT (p.4) Xk can be broken up into two parts. First let exp(-j2/N) = WN Then Xk = Σn=0,1,…,N-1 x[n]( WN )kn k=0,1,…,N-1 Let N be an even integer: a[n]=x[2n] ; b[n]=x[2n + 1], for n = 0,…,N/2. Let Ak = Σ n=0,…,N/2-1 a[n] (WN/2)kn, k=0,1,…N/2-1 Let Bk = Σ n=0,…,N/2-1 b[n] (WN/2)kn, k=0,1,…N/2-1 Then Xk = Ak + (WN)k Bk, k=0,1,…,N/2 -1 And X(N/2)+k = Ak - (WN)k Bk, k=0,1,…,N/2 -1 See page 197 for the verification.

4.4 FFT (p.5) Note that the two parts are (N/2) DFTs. This can continue until signals with only one nonzero value are obtained if N is a power of 2. The process is graphically illustrated by Figure 4.21. To have the outputs in the correct order, a process called bit reversing (see Table 4.3) is used.

4.4.1 Applications of the FFT Algorithm Computation of the Fourier Transform Convolution Data Analysis Extraction of a Sinusoidal Component Embedded in Noise Analysis of Sunspot Data Stock Price Analysis