Bridging Theory in Practice Transferring Technical Knowledge to Practical Applications.

Slides:



Advertisements
Similar presentations
Compact IGBT Modelling for System Simulation Philip Mawby Angus Bryant.
Advertisements

Heat Generation in Electronics Thermal Management of Electronics Reference: San José State University Mechanical Engineering Department.
Chapter 9 Capacitors.
MOSFET SELECTION FOR A THREE PHASE INVERTER Team 9 JR Alvarez, Matt Myers Chris Sommer, Scott OConnor.
DYNAMIC ELECTRICITY.
H t Heat (Joule) Q t Heat flow rate (J/s) 1/C t C t :Thermal capacitance R t Thermal resistance T Temp. ( o C) Modeling of Thermal Systems In this lesson,
Modeling and Simulation for Power Electronics and Electrical Drives dr. ir. P.J. van Duijsen Simulation Research Haus der Technik, München, 2003.
EE2010 Fundamentals of Electric Circuits Text Book: Introductory Circuit Analysis - Robert Boylestad.
Announcements 1.Midterm No. 1 Thursday Oct. 6 in class; one 8-1/2 x 11 sheet of notes allowed. No text, no calculator, no operating cell phones; no blue.
Class AB - Protection A short circuit output causes the current demand to rise beyond the design limit. In practice, it rises just far enough to destroy.
Output Transistors Current gain / input impedance is a vital parameter of a power amplifier. In the class A analysis, the load impedance is scaled by a.
Fundamentals of Power Electronics 1 Chapter 20: Quasi-Resonant Converters Chapter 20 Quasi-Resonant Converters Introduction 20.1The zero-current-switching.
Temperature-Aware Design Presented by Mehul Shah 4/29/04.
Capacitive Charging, Discharging, and Simple Waveshaping Circuits
One Dimensional Steady Heat Conduction problems P M V Subbarao Associate Professor Mechanical Engineering Department IIT Delhi Simple ideas for complex.
POWER TRANSISTOR – MOSFET Parameter 2N6757 2N6792 VDS(max) (V)
POWER SUPPILES LECTURE 20.
EKT214 - ANALOG ELECTRONIC CIRCUIT II
Lec. (4) Chapter (2) AC- circuits Capacitors and transient current 1.
RC (Resistor-Capacitor) Circuits
Chapter 20: Circuits Current and EMF Ohm’s Law and Resistance
Power Electronic Devices Semester 1 Lecturer: Javier Sebastián Electrical Energy Conversion and Power Systems Universidad de Oviedo Power Supply Systems.
Engineering H192 - Computer Programming Gateway Engineering Education Coalition Lab 4P. 1Winter Quarter Analog Electronics Lab 4.
POWER AMPLIFIER CHAPTER 4.
Chapter 22 Alternating-Current Circuits and Machines.
Programme of Studies:BSc in Electrical Engineering Entrance requirements: None Number of ECTS credits:5 (Average student working time: 125 hours) Lecturer:
Diode Theory and Application
Bridging Theory in Practice Transferring Technical Knowledge to Practical Applications.
Chapter 11 AC Steady-State Power
Chapter 28 Direct Current Circuits 1.R connections in series and in parallel 2.Define DC (direct current), AC (alternating current) 3.Model of a battery.
2. Analogue Theory and Circuit Analysis 2.1 Steady-State (DC) Circuits 2.2 Time-Dependent Circuits DeSiaMorePowered by DeSiaMore1.
Monday, Apr. 24, 2006PHYS , Spring 2006 Dr. Jaehoon Yu 1 PHYS 1444 – Section 501 Lecture #22 Monday, Apr. 24, 2006 Dr. Jaehoon Yu AC Circuit w/
Engineering H192 - Computer Programming The Ohio State University Gateway Engineering Education Coalition Lab 3P. 1Winter Quarter Analog Electronics Lab.
Electrical Principles 1 1 G5 - ELECTRICAL PRINCIPLES [3 exam questions - 3 groups] G5A - Reactance; inductance; capacitance; impedance; impedance matching.
Lecture # 12&13 SWITCHING-MODE POWER SUPPLIES
1 Passive components and circuits - CCP Lecture 4.
EE 369 POWER SYSTEM ANALYSIS
Engineering 6806: Design Project 9/10/02 Engineering 6806 Power and Heat Michael Bruce-Lockhart.
Chapter 07 Electronic Analysis of CMOS Logic Gates
Copyright © by NCCER, Published by Pearson Education, Inc. Electrical Level Two – Alternating Current Module National Center for Construction.
Introduction  The fundamental passive linear circuit elements are the  resistor (R),  capacitor (C)  inductor (L).  These circuit.
The Influence of the Selected Factors on Transient Thermal Impedance of Semiconductor Devices Krzysztof Górecki, Janusz Zarębski Gdynia Maritime University.
Chapter 6 Voltage Regulators By En. Rosemizi Bin Abd Rahim EMT212 – Analog Electronic II.
One-Dimensional Steady-State Conduction
5 장 Dielectrics and Insulators. Preface ‘ Ceramic dielectrics and insulators ’ is a wide-ranging and complex topic embracing many types of ceramic, physical.
EMT212 – Analog Electronic II
Schottky Barrier Diode One semiconductor region of the pn junction diode can be replaced by a non-ohmic rectifying metal contact.A Schottky.
EMT 112 / 4 ANALOGUE ELECTRONICS Self-Reading Power Transistor – BJT & MOSFET.
Halliday/Resnick/Walker Fundamentals of Physics 8th edition
Chapter 9 CAPACITOR.
Lesson 12: Capacitors Transient Analysis
Heat Sinks and Component Temperature Control
Half-wave Rectifier.
POWER TRANSISTOR – MOSFET Parameter 2N6757 2N6792 VDS(max) (V)
Electrical impedance Electrical impedance, or simply impedance, describes a measure of opposition to alternating current (AC). Electrical impedance extends.
Bridge Rectifier Electrical Engineering and Industrical Electronics
DR. S. & S. S. GANDHY COLLEGE OF ENGINEERING AND TECHNOLOGY
Unit 2 | Using tools, equipment and other devices
EET101 LITAR ELEKTRIK 1 Lecture 1.
Capacitance, Phase, and Frequency
Fundamental of Electrical circuits
Electromechanical Systems
Electromechanical Systems
Dr John Fletcher Thermal Management Dr John Fletcher
ELE 1001: Basic Electrical Technology Lecture 6 Capacitors
Voltage, Current, Resistance, Power, & Diodes
UNIT-1 Introduction to Electrical Circuits
Electronic PRINCIPLES
Technician License Course.
Presentation transcript:

Bridging Theory in Practice Transferring Technical Knowledge to Practical Applications

Advanced Power Dissipation and AC Thermal Analysis

Intended Audience: Engineers interested in advanced thermal design under AC (variable duty cycle and transient) conditions A basic knowledge of DC thermal analysis is required Topics Covered: Modeling thermal performance with electrical parameters Explanation of thermal RC networks Introduction of the Z th Diagram AC thermal calculations Complex waveform (superposition principle) thermal calculations Expected Time: Approximately 60 minutes

Advanced Power Dissipation and AC Thermal Analysis Electrical Parameters vs. Thermal Parameters Thermal Resistance and Capacitance Networks Understanding the Z th Diagram Example AC Thermal Calculations Complex Waveforms and Superposition

Electrical vs. Thermal DC Parameters Electrical ParametersThermal Parameters I R VV + - V = I R R = Electrical Resistance (  ) V = Potential Difference (V) I = Current (A)  T = P D R th R th = Thermal Resistance (C/W)  T = Temperature Difference (C) P D = Power Dissipated (W) PDPD R th TT + -

Electrical Resistance vs. Thermal Resistance Electrical ResistanceThermal Resistance I = Current A = Area d = Thickness  = Electrical Conductivity R = Electrical Resistance (  ) I A } d  R P D = Power Dissipated A = Area d = Thickness th = Thermal Conductivity R th = Thermal Resistance (C/W) V + - PDPD A } d th R th TT + -

Electrical Circuits vs. Thermal Circuits Electrical CircuitsThermal Circuits I R VV + - PDPD R th TT + - I = 10A R = 1   V = IR  V = (10A)(1  ) = 10V 10V Potential Difference P D = 10W R th = 1C/W  T = P D R th  T = (10W)(1C/W) = 10C 10C Temperature Difference

Electrical vs. Thermal Parameters Electrical ParametersThermal Parameters + C th E - TT + C Q - V C = Capacitance (Farads = A-sec / V) C th = Thermal Capacitance (Joules / C = Watts-sec / C)

Advanced Power Dissipation and AC Thermal Analysis Electrical Parameters vs. Thermal Parameters Thermal Resistance and Capacitance Networks Understanding the Z th Diagram Example AC Thermal Calculations Complex Waveforms and Superposition

Die Attach C th3 – R th3 Leadframe Silicon C th2 – R th2 Thermal Resistance & Capacitance Example Silicon Wafer Cross Section p + Well C th1 - R th1 Leadframe Metal

Thermal RC Network - Internal Chip  T T junction C th1 C th2 C th3 T ambient R th1 R th2 R th3 PDPD Temperature ~ Voltage Power ~ Current

Thermal RC Network – Total Temperature ~ Voltage Power ~ Current Chip  T T junction C th1 C th2 C th3 T ambient R th1 R th2 R th3 PDPD Heatsink T case R inteface R heatsink C interface C heatsink

Junction Temperature Calculations With temperature analogous to voltage,  T Is determined by the P D and the RC network Chip  T T junction C th1 C th2 C th3 T ambient R th1 R th2 R th3 PDPD Heatsink T case

Junction Temperature Calculations The maximum junction temperature is specified in the absolute maximum section of the data sheet (T j,max ) Chip  T T junction C th1 C th2 C th3 T ambient R th1 R th2 R th3 PDPD Heatsink T case

Junction Temperature Calculations The device junction-to-case thermal resistance (R thjc ) is specified in the datasheet and determines  T jc. R thjc is usually valid for DC only  T jc Chip  T T junction C th1 C th2 C th3 T ambient R th1 R th2 R th3 PDPD Heatsink T case

Chip  T T junction C th1 C th2 C th3 T ambient R th1 R th2 R th3 PDPD Heatsink T case Junction Temperature Calculations The external case-to-ambient thermal resistance, (R thca ) is determined by the heatsink. This determines the temperature change from the case to the ambient.  T ca

DC Junction Temperature Calculations Under DC conditions, power and temperature reach steady state conditions and the thermal capacitors are removed from the circuit model Chip  T T junction T ambient R th1 R th2 R th3 PDPD Heatsink T case

DC Junction Temperature Calculation Power Dissipation P D = I ds 2 R dson = (5A) 2 (24m  ) = 0.6W Thermal Resistance R thja = 55 C/W Junction Temperature T junction = T ambient + P D R thja T junction = 85C + (0.6W)(55C/W) T junction = 85C + 33C = 118C DC Calculations are relatively simple

Z th (j  ) = ? Z th (t) = ? AC Junction Temperature Calculation of Transfer Function Chip  T T junction C th1 C th2 C th3 T ambient R th1 R th2 R th3 PDPD Heatsink T case

AC Junction Temperature Calculation of Transfer Function

Simplified AC Thermal RC Network Chip  T T junction T ambient R’ th1 R’ th2 R’ th3 PDPD Heatsink T case C’ th1 C’ th2 C’ th3 Thermal capacitance now in parallel with thermal resistance

The new RC component values of the simplified network are obtained by mathematical transformations. They do NOT refer to any physical layer. Together, they describe the overall thermal behavior and performance of the device and heatsink. Chip  T T junction T ambient R’ th1 R’ th2 R’ th3 PDPD Heatsink T case C’ th1 C’ th2 C’ th3 Simplified AC Thermal RC Network

Chip  T T junction T ambient R’ th1 R’ th2 R’ th3 PDPD Heatsink T case C’ th1 C’ th2 C’ th3 Frequency Domain Time Domain

AC Temperature Calculation Simplified Transfer Function  T( t ) = P D (t) Z th ( t) Tj(t)P(t) Z th

Advanced Power Dissipation and AC Thermal Analysis Electrical Parameters vs. Thermal Parameters Thermal Resistance and Capacitance Networks Understanding the Z th Diagram Example AC Thermal Calculations Complex Waveforms and Superposition

Development of the Z th Diagram Create test set-up for integrated circuit package types Power is generated in the integrated circuit for defined lengths of time The resulting temperature rise is measured A thermal impedance (Zth) diagram is generated Tj(t)P(t) Z th

Z thja (C / W) t pulse (sec) 1E-51E+3 Duty Cycle 50% 20% 10% 5% 2% 1% Single Pulse 1E-31E-11E+1 Z th Diagram for the TO-263 Package

Z thja (C / W) t pulse (sec) 1E-51E+3 Duty Cycle 50% 20% 10% 5% 2% 1% Single Pulse 1E-31E-11E+1 Single Pulse P(t) PDPD t pulse

Z thja (C / W) t pulse (sec) 1E-51E-31E-11E+11E+3 Duty Cycle 50% 20% 10% 5% 2% 1% Single Pulse Periodic event: P(t) PDPD t pulse T Duty Cycle: Z th Diagram for the TO-263 Package

Z th Diagrams for Different Packages TO t p = 1s Z thja  2C/W TO t p = 1s Z thja  4C/W SOT-223 t p = 1s Z thja  30C/W SO-8 t p = 1s Z thja  65C/W

Advanced Power Dissipation and AC Thermal Analysis Electrical Parameters vs. Thermal Parameters Thermal Resistance and Capacitance Networks Understanding the Z th Diagram Example AC Thermal Calculations Complex Waveforms and Superposition

PDPD 400W t pulse t pulse = 200µs T iunction (t) T peak T peak = ? Single Pulse in a TO-263 Package 25C

Duty Cycle 50% 20% 10% 5% 2% 1% Single Pulse Single Pulse in a TO-263 Package Z thja (C / W) t pulse (sec) 1E-51E-31E-11E+11E+3 Duty Cycle 50% 20% 10% 5% 2% 1% Single Pulse t pulse = 2E-4 s Z thja  C/W

Power Dissipation P D = 400W Thermal Resistance Z thja = C/W Junction Temperature T junction,peak = T ambient + P D Z thja T junction,peak = 25C + (400W)(0.083C/W) T junction,peak = 25C + 33C = 58C Single Pulse in a TO-263 Package

Single Pulse – TO-263 Package Saber Simulation Time (  s) P D,max = 400W 400W 350W 300W 250W 200W 150W 0W 100W 50W 55C 50C 45C 40C 35C 30C 25C T junction,peak = 55C

50% Duty Cycle in a TO-263 Package PDPD 1.44W t pulse = 200µs t period = 400µs T iunction (t) T peak T peak = ? 25C

Duty Cycle 50% 20% 10% 5% 2% 1% Single Pulse 50% Duty Cycle in a TO-263 Package Z thja (C / W) t pulse (sec) 1E-51E-31E-11E+11E+3 t pulse = 2E-4 s Z thja  23 C/W

Power Dissipation P D = 1.44W Thermal Resistance Z thja = 23 C/W Junction Temperature T junction = T ambient + P D Z thja T junction = 25C + (1.44W)(23C/W) T junction = 25C + 33C = 58C 50% Duty Cycle in a TO-263 Package

Advanced Power Dissipation and AC Thermal Analysis Electrical Parameters vs. Thermal Parameters Thermal Resistance and Capacitance Networks Understanding the Z th Diagram Example AC Thermal Calculations Complex Waveforms and Superposition

Complex Pulse-Superposition MOSFET Turn On I DS 1.V IN goes HI 2.I DS increases 3.V DS decreases 4.P LOSS spikes 1. V IN 2. I DS 4. P LOSS 3. V DS

I DS Complex Pulse-Superposition MOSFET Turn On 2. I DS 4. P LOSS 3. V DS Pulse 1: t START 20µS t STOP 50µS Pulse 2: t START 25µS t STOP 50µS Pulse 3(neg): t START 40µS t STOP 50µS Pulse 4(neg): t START 45µS t STOP 50µS 1. V IN

Complex Pulse-Superposition MOSFET Turn On Power Time t=5µs At t = 5µs: t PULSE,1 = 5µsec t PULSE,2 = t PULSE,3 = t PULSE,4 = 0  T J1 (5µs) = Z TH (5µs)*P PULSE,1

Complex Pulse-Superposition MOSFET Turn On Power Time t=20µs At t = 20µs: t PULSE,1 = 20µsec t PULSE,2 = 15µsec t PULSE,3 = t PULSE,4 = 0  T J2 (20µs) = Z TH (20µs)*P PULSE,1 + Z TH (15µs)*P PULSE,2

Complex Pulse-Superpositon MOSFET Turn On Power Time t=25µs At t = 25µs: t PULSE,1 = 25µsec t PULSE,2 = 20µsec t PULSE,3 = 5µsec t PULSE,4 = 0  T J3 (25µs) = Z TH (25µs)*P PULSE,1 + Z TH (20µs)*P PULSE,2 - Z TH (5µs)*P PULSE,3

Complex Pulse-Superpositon MOSFET Turn On Power Time t=30µs At t = 30µs: t PULSE,1 = 30µsec t PULSE,2 = 25µsec t PULSE,3 = 10µsec t PULSE,4 = 5µsec  T J4 (30µs) = Z TH (30µs)*P PULSE,1 + Z TH (25µs)*P PULSE,2 - Z TH (10µs)*P PULSE,3 - Z TH (5µs)*P PULSE,4

Complex Pulse-Superpositon MOSFET Turn On I DS 4. P LOSS Pulse 1: t START 20µS t STOP 50µS Pulse 2: t START 25µS t STOP 50µS Pulse 3(neg): t START 40µS t STOP 50µS Pulse 4(neg): t START 45µS t STOP 50µS T J1 T J2 T J3 T J4

Advanced Power Dissipation and AC Thermal Analysis Electrical Parameters vs. Thermal Parameters Thermal Resistance and Capacitance Networks Understanding the Z th Diagram Example AC Thermal Calculations Complex Waveforms and Superposition

Advanced Power Dissipation and AC Thermal Analysis

Thank you!