Lecture 7: Basis Functions & Fourier Series

Slides:



Advertisements
Similar presentations
Signals and Systems Fall 2003 Lecture #5 18 September Complex Exponentials as Eigenfunctions of LTI Systems 2. Fourier Series representation of.
Advertisements

ECE 8443 – Pattern Recognition EE 3512 – Signals: Continuous and Discrete Objectives: Response to a Sinusoidal Input Frequency Analysis of an RC Circuit.
Leo Lam © Signals and Systems EE235. Transformers Leo Lam ©
Lecture 3 Laplace transform
Review of Frequency Domain
EE-2027 SaS 06-07, L11 1/12 Lecture 11: Fourier Transform Properties and Examples 3. Basis functions (3 lectures): Concept of basis function. Fourier series.
Lecture 4: Linear Systems and Convolution
EECS 20 Chapter 10 Part 11 Fourier Transform In the last several chapters we Viewed periodic functions in terms of frequency components (Fourier series)
EE-2027 SaS, L13 1/13 Lecture 13: Inverse Laplace Transform 5 Laplace transform (3 lectures): Laplace transform as Fourier transform with convergence factor.
EECS 20 Chapter 8 Part 21 Frequency Response Last time we Revisited formal definitions of linearity and time-invariance Found an eigenfunction for linear.
Lecture 19: Discrete-Time Transfer Functions
Lecture 16: Continuous-Time Transfer Functions
Lecture 5: Linear Systems and Convolution
EE-2027 SaS, L15 1/15 Lecture 15: Continuous-Time Transfer Functions 6 Transfer Function of Continuous-Time Systems (3 lectures): Transfer function, frequency.
Lecture 8: Fourier Series and Fourier Transform
Lecture 14: Laplace Transform Properties
EE-2027 SaS, L11 1/13 Lecture 11: Discrete Fourier Transform 4 Sampling Discrete-time systems (2 lectures): Sampling theorem, discrete Fourier transform.
Lecture 9: Fourier Transform Properties and Examples
EE-2027 SaS, L18 1/12 Lecture 18: Discrete-Time Transfer Functions 7 Transfer Function of a Discrete-Time Systems (2 lectures): Impulse sampler, Laplace.
Lecture 6: Linear Systems and Convolution
Continuous-Time Fourier Methods
Lecture 12: Laplace Transform
EE513 Audio Signals and Systems Digital Signal Processing (Systems) Kevin D. Donohue Electrical and Computer Engineering University of Kentucky.
EE3010 SaS, L7 1/19 Lecture 7: Linear Systems and Convolution Specific objectives for today: We’re looking at continuous time signals and systems Understand.
CISE315 SaS, L171/16 Lecture 8: Basis Functions & Fourier Series 3. Basis functions: Concept of basis function. Fourier series representation of time functions.
Basic signals Why use complex exponentials? – Because they are useful building blocks which can be used to represent large and useful classes of signals.
Leo Lam © Signals and Systems EE235 Lecture 21.
Fourier Series. Introduction Decompose a periodic input signal into primitive periodic components. A periodic sequence T2T3T t f(t)f(t)
1 Fourier Representations of Signals & Linear Time-Invariant Systems Chapter 3.
Signal and Systems Prof. H. Sameti Chapter 3: Fourier Series Representation of Periodic Signals Complex Exponentials as Eigenfunctions of LTI Systems Fourier.
EE104: Lecture 5 Outline Review of Last Lecture Introduction to Fourier Transforms Fourier Transform from Fourier Series Fourier Transform Pair and Signal.
BYST CPE200 - W2003: LTI System 79 CPE200 Signals and Systems Chapter 2: Linear Time-Invariant Systems.
Fourier series: Eigenfunction Approach
BYST SigSys - WS2003: Fourier Rep. 120 CPE200 Signals and Systems Chapter 3: Fourier Representations for Signals (Part I)
Course Outline (Tentative) Fundamental Concepts of Signals and Systems Signals Systems Linear Time-Invariant (LTI) Systems Convolution integral and sum.
1. 2 Ship encountering the superposition of 3 waves.
Signals and Systems Using MATLAB Luis F. Chaparro
Chapter 2. Signals and Linear Systems
Leo Lam © Signals and Systems EE235 Lecture 20.
ME375 Handouts - Fall 2002 MESB 374 System Modeling and Analysis Laplace Transform and Its Applications.
EEE 503 Digital Signal Processing Lecture #2 : EEE 503 Digital Signal Processing Lecture #2 : Discrete-Time Signals & Systems Dr. Panuthat Boonpramuk Department.
Chapter 7 The Laplace Transform
Motivation for the Laplace Transform
ECE 8443 – Pattern Recognition EE 3512 – Signals: Continuous and Discrete Objectives: Eigenfunctions Fourier Series of CT Signals Trigonometric Fourier.
Leo Lam © Signals and Systems EE235 Leo Lam.
Fourier Representation of Signals and LTI Systems.
Min-Plus Linear Systems Theory Min-Plus Linear Systems Theory.
Signals and Systems Lecture #6 EE3010_Lecture6Al-Dhaifallah_Term3321.
1 Roadmap SignalSystem Input Signal Output Signal characteristics Given input and system information, solve for the response Solving differential equation.
ECE 8443 – Pattern Recognition ECE 3163 – Signals and Systems Objectives: Eigenfunctions Fourier Series of CT Signals Trigonometric Fourier Series Dirichlet.
Frequency domain analysis and Fourier Transform
Oh-Jin Kwon, EE dept., Sejong Univ., Seoul, Korea: 2.3 Fourier Transform: From Fourier Series to Fourier Transforms.
Ch # 11 Fourier Series, Integrals, and Transform 1.
Chapter 2. Signals and Linear Systems
ENEE 322: Continuous-Time Fourier Transform (Chapter 4)
Math for CS Fourier Transforms
EE104: Lecture 6 Outline Announcements: HW 1 due today, HW 2 posted Review of Last Lecture Additional comments on Fourier transforms Review of time window.
Lecture 7: Basis Functions & Fourier Series
Chapter 2. Signals and Linear Systems
CE Digital Signal Processing Fall Discrete-time Fourier Transform
Recap: Chapters 1-7: Signals and Systems
Chapter 2. Fourier Representation of Signals and Systems
UNIT II Analysis of Continuous Time signal
Research Methods in Acoustics Lecture 9: Laplace Transform and z-Transform Jonas Braasch.
Notes Assignments Tutorial problems
Lecture 5: Linear Systems and Convolution
Discrete Fourier Transform Dr.P.Prakasam Professor/ECE.
Fourier Series September 18, 2000 EE 64, Section 1 ©Michael R. Gustafson II Pratt School of Engineering.
Signals & Systems (CNET - 221) Chapter-5 Fourier Transform
Lecture 4: Linear Systems and Convolution
Presentation transcript:

Lecture 7: Basis Functions & Fourier Series 3. Basis functions (3 lectures): Concept of basis function. Fourier series representation of time functions. Fourier transform and its properties. Examples, transform of simple time functions. Specific objectives for today: Introduction to Fourier series (& transform) Eigenfunctions of a system Show sinusoidal signals are eigenfunctions of LTI systems Introduction to signals and basis functions Fourier basis & coefficients of a periodic signal EE-2027 SaS, L7

Lecture 7: Resources Core material SaS, O&W, C3.1-3.3 Background material MIT Lecture 5 In this set of three lectures, we’re concerned with continuous time signals, Fourier series and Fourier transforms only. EE-2027 SaS, L7

Why is Fourier Theory Important (i)? For a particular system, what signals fk(t) have the property that: Then fk(t) is an eigenfunction with eigenvalue lk If an input signal can be decomposed as x(t) = Sk akfk(t) Then the response of an LTI system is y(t) = Sk aklkfk(t) For an LTI system, fk(t) = est where sC, are eigenfunctions. x(t) = fk(t) y(t) = lkfk(t) System EE-2027 SaS, L7

Why is Fourier Theory Important (ii)? Fourier transforms map a time-domain signal into a frequency domain signal Simple interpretation of the frequency content of signals in the frequency domain (as opposed to time). Design systems to filter out high or low frequency components. Analyse systems in frequency domain. Invariant to high frequency signals EE-2027 SaS, L7

Why is Fourier Theory Important (iii)? If F{x(t)} = X(jw) w is the frequency Then F{x’(t)} = jwX(jw) So solving a differential equation is transformed from a calculus operation in the time domain into an algebraic operation in the frequency domain (see Laplace transform) Example becomes and is solved for the roots w (N.B. complementary equations): and we take the inverse Fourier transform for those w. EE-2027 SaS, L7

Introduction to System Eigenfunctions Lets imagine what (basis) signals fk(t) have the property that: i.e. the output signal is the same as the input signal, multiplied by the constant “gain” lk (which may be complex) For CT LTI systems, we also have that Therefore, to make use of this theory we need: 1) system identification is determined by finding {fk,lk}. 2) response, we also have to decompose x(t) in terms of fk(t) by calculating the coefficients {ak}. This is analogous to eigenvectors/eigenvalues matrix decomposition x(t) = fk(t) y(t) = lkfk(t) System x(t) = Sk akfk(t) y(t) = Sk aklkfk(t) LTI System EE-2027 SaS, L7

Complex Exponentials are Eigenfunctions of any CT LTI System Consider a CT LTI system with impulse response h(t) and input signal x(t)=f(t) = est, for any value of sC: Assuming that the integral on the right hand side converges to H(s), this becomes (for any value of sC): Therefore f(t)=est is an eigenfunction, with eigenvalue l=H(s) EE-2027 SaS, L7

Example 1: Time Delay & Imaginary Input Consider a CT, LTI system where the input and output are related by a pure time shift: Consider a purely imaginary input signal: Then the response is: ej2t is an eigenfunction (as we’d expect) and the associated eigenvalue is H(j2) = e-j6. The eigenvalue could be derived “more generally”. The system impulse response is h(t) = d(t-3), therefore: So H(j2) = e-j6! EE-2027 SaS, L7

Example 1a: Phase Shift Note that the corresponding input e-j2t has eigenvalue ej6, so lets consider an input cosine signal of frequency 2 so that: By the system LTI, eigenfunction property, the system output is written as: So because the eigenvalue is purely imaginary, this corresponds to a phase shift (time delay) in the system’s response. If the eigenvalue had a real component, this would correspond to an amplitude variation EE-2027 SaS, L7

Example 2: Time Delay & Superposition Consider the same system (3 time delays) and now consider the input signal x(t) = cos(4t)+cos(7t), a superposition of two sinusoidal signals that are not harmonically related. The response is obviously: Consider x(t) represented using Euler’s formula: Then due to the superposition property and H(s) =e-3s While the answer for this simple system can be directly spotted, the superposition property allows us to apply the eigenfunction concept to more complex LTI systems. EE-2027 SaS, L7

History of Fourier/Harmonic Series The idea of using trigonometric sums was used to predict astronomical events Euler studied vibrating strings, ~1750, which are signals where linear displacement was preserved with time. Fourier described how such a series could be applied and showed that a periodic signals can be represented as the integrals of sinusoids that are not all harmonically related Now widely used to understand the structure and frequency content of arbitrary signals w=1 w=2 w=3 w=4 EE-2027 SaS, L7

Fourier Series and Fourier Basis Functions The theory derived for LTI convolution, used the concept that any input signal can represented as a linear combination of shifted impulses (for either DT or CT signals) We will now look at how (input) signals can be represented as a linear combination of Fourier basis functions (LTI eigenfunctions) which are purely imaginary exponentials These are known as continuous-time Fourier series The bases are scaled and shifted sinusoidal signals, which can be represented as complex exponentials x(t) = sin(t) + 0.2cos(2t) + 0.1sin(5t) ejwt x(t) EE-2027 SaS, L7

Periodic Signals & Fourier Series A periodic signal has the property x(t) = x(t+T), T is the fundamental period, w0 = 2p/T is the fundamental frequency. Two periodic signals include: For each periodic signal, the Fourier basis the set of harmonically related complex exponentials: Thus the Fourier series is of the form: k=0 is a constant k=+/-1 are the fundamental/first harmonic components k=+/-N are the Nth harmonic components For a particular signal, are the values of {ak}k? EE-2027 SaS, L7

Fourier Series Representation of a CT Periodic Signal (i) Given that a signal has a Fourier series representation, we have to find {ak}k. Multiplying through by Using Euler’s formula for the complex exponential integral It can be shown that T is the fundamental period of x(t) EE-2027 SaS, L7

Fourier Series Representation of a CT Periodic Signal (ii) Therefore which allows us to determine the coefficients. Also note that this result is the same if we integrate over any interval of length T (not just [0,T]), denoted by To summarise, if x(t) has a Fourier series representation, then the pair of equations that defines the Fourier series of a periodic, continuous-time signal: EE-2027 SaS, L7

Lecture 7: Summary Fourier bases, series and transforms are extremely useful for frequency domain analysis, solving differential equations and analysing invariance for LTI signals/systems For an LTI system est is an eigenfunction H(s) is the corresponding (complex) eigenvalue This can be used, like convolution, to calculate the output of an LTI system once H(s) is known. A Fourier basis is a set of harmonically related complex exponentials Any periodic signal can be represented as an infinite sum (Fourier series) of Fourier bases, where the first harmonic is equal to the fundamental frequency The corresponding coefficients can be evaluated EE-2027 SaS, L7

Lecture 7: Exercises SaS, O&W, Q3.1-3.5 EE-2027 SaS, L7