Kondo Physics from a Quantum Information Perspective

Slides:



Advertisements
Similar presentations
One-dimensional approach to frustrated magnets
Advertisements

Biexciton-Exciton Cascades in Graphene Quantum Dots CAP 2014, Sudbury Isil Ozfidan I.Ozfidan, M. Korkusinski,A.D.Guclu,J.McGuire and P.Hawrylak, PRB89,
Are there gels in quantum systems? Jörg Schmalian, Iowa State University and DOE Ames Laboratory Peter G. Wolynes University of California at San Diego.
Non-equilibrium dynamics in the Dicke model Izabella Lovas Supervisor: Balázs Dóra Budapest University of Technology and Economics
Antoine Georges Olivier Parcollet Nick Read Subir Sachdev Jinwu Ye Mean field theories of quantum spin glasses Talk online: Sachdev.
1 Chiral Symmetry Breaking and Restoration in QCD Da Huang Institute of Theoretical Physics, Chinese Academy of
Andy Ferris International summer school on new trends in computational approaches for many-body systems Orford, Québec (June 2012) Multiscale Entanglement.
Subir Sachdev Science 286, 2479 (1999). Quantum phase transitions in atomic gases and condensed matter Transparencies online at
Silvano De Franceschi Laboratorio Nazionale TASC INFM-CNR, Trieste, Italy Orbital Kondo effect in carbon nanotube quantum dots
Chaos and interactions in nano-size metallic grains: the competition between superconductivity and ferromagnetism Yoram Alhassid (Yale) Introduction Universal.
The noise spectra of mesoscopic structures Eitan Rothstein With Amnon Aharony and Ora Entin Condensed matter seminar, BGU.
Solid state realisation of Werner quantum states via Kondo spins Ross McKenzie Sam Young Cho Reference: S.Y. Cho and R.H.M, Phys. Rev. A 73, (2006)
Probing interacting systems of cold atoms using interference experiments Harvard-MIT CUA Vladimir Gritsev Harvard Adilet Imambekov Harvard Anton Burkov.
Breakdown of the adiabatic approximation in low-dimensional gapless systems Anatoli Polkovnikov, Boston University Vladimir Gritsev Harvard University.
Renormalised Perturbation Theory ● Motivation ● Illustration with the Anderson impurity model ● Ways of calculating the renormalised parameters ● Range.
Random Field Ising Model on Small-World Networks Seung Woo Son, Hawoong Jeong 1 and Jae Dong Noh 2 1 Dept. Physics, Korea Advanced Institute Science and.
Open Systems & Quantum Information Milano, 10 Marzo 2006 Measures of Entanglement at Quantum Phase Transitions M. Roncaglia G. Morandi F. Ortolani E. Ercolessi.
Equilibrium dynamics of entangled states near quantum critical points Talk online at Physical Review Letters 78, 843.
Witnesses for quantum information resources Archan S. Majumdar S. N. Bose National Centre for Basic Sciences, Kolkata, India Collaborators: S. Adhikari,
Ying Chen Los Alamos National Laboratory Collaborators: Wei Bao Los Alamos National Laboratory Emilio Lorenzo CNRS, Grenoble, France Yiming Qiu National.
Ultracold Fermi gases University of Trento BEC Meeting, Trento, 2-3 May 2006 INFM-CNR Sandro Stringari.
Entanglement in the Kondo Spin Chain Abolfazl Bayat 1, Sougato Bose 1, Pasquale Sodano 2 1 University College London, London, UK. 2 University of Perugia,
Memory Effect in Spin Chains Entanglement Distribution 12N Spin chains can be used as a channel for short distance quantum communication [1]. The basic.
VARIATIONAL APPROACH FOR THE TWO-DIMENSIONAL TRAPPED BOSE GAS L. Pricoupenko Trento, June 2003 LABORATOIRE DE PHYSIQUE THEORIQUE DES LIQUIDES Université.
Atomic Structural Response to External Strain for AGNRs Wenfu Liao & Guanghui Zhou KITPC Program—Molecular Junctions Supported by NSFC under Grant No.
Max Planck Institut of Quantum Optics (Garching) New perspectives on Thermalization Aspen (NON) THERMALIZATION OF 1D SYSTEMS: numerical studies.
Thermodynamics and dynamics of systems with long range interactions David Mukamel S. Ruffo, J. Barre, A. Campa, A. Giansanti, N. Schreiber, P. de Buyl,
Chiranjib Mitra IISER-Kolkata
Dynamics of phase transitions in ion traps A. Retzker, A. Del Campo, M. Plenio, G. Morigi and G. De Chiara Quantum Engineering of States and Devices: Theory.
Critical Phenomena in Random and Complex Systems Capri September 9-12, 2014 Spin Glass Dynamics at the Mesoscale Samaresh Guchhait* and Raymond L. Orbach**
Glass Phenomenology from the connection to spin glasses: review and ideas Z.Nussinov Washington University.
Chung-Hou Chung Collaborators:
Solving Impurity Structures Using Inelastic Neutron Scattering Quantum Magnetism - Pure systems - vacancies - bond impurities Conclusions Collin Broholm*
Anatoli Polkovnikov Krishnendu Sengupta Subir Sachdev Steve Girvin Dynamics of Mott insulators in strong potential gradients Transparencies online at
Correlated States in Optical Lattices Fei Zhou (PITP,UBC) Feb. 1, 2004 At Asian Center, UBC.
Nonlocal quantum coherence between normal probes placed on a superconductor is predicted to occur through two microscopic processes. In crossed Andreev.
Phase transitions in Hubbard Model. Anti-ferromagnetic and superconducting order in the Hubbard model A functional renormalization group study T.Baier,
Finite Temperature Spin Correlations in Quantum Magnets with a Spin Gap Collin Broholm* Johns Hopkins University and NIST Center for Neutron Research *supported.
The Helical Luttinger Liquid and the Edge of Quantum Spin Hall Systems
Atoms in optical lattices and the Quantum Hall effect Anders S. Sørensen Niels Bohr Institute, Copenhagen.
Quasi-1D antiferromagnets in a magnetic field a DMRG study Institute of Theoretical Physics University of Lausanne Switzerland G. Fath.
1 Entanglement between Collective Operators in a Linear Harmonic Chain Johannes Kofler 1, Vlatko Vedral 2, Myungshik S. Kim 3, Časlav Brukner 1,4 1 University.
Optically Trapped Low-Dimensional Bose Gases in Random Environment
Anisotropic exactly solvable models in the cold atomic systems Jiang, Guan, Wang & Lin Junpeng Cao.
Progress Report: Tools for Quantum Information Processing in Microelectronics ARO MURI (Rochester-Stanford-Harvard-Rutgers) Third Year Review, Harvard.
Journal Club február 16. Tóvári Endre Resonance-hybrid states in a triple quantum dot PHYSICAL REVIEW B 85, (R) (2012) Using QDs as building.
Experimental Quantification of Entanglement in low dimensional Spin Systems Chiranjib Mitra IISER-Kolkata Quantum Information Processing and Applications.
Magnetized States of Quantum Spin Chains
Purity and Continuous Quantum Phase Transition in XX spin chain Wonmin Son In collaboration with; Luigi Amico (Madrid), Francesco Plastina (Italy), Vlatko.
Non classical correlations of two interacting qubits coupled to independent reservoirs R. Migliore CNR-INFM, Research Unit CNISM of Palermo Dipartimento.
Hidden topological order in one-dimensional Bose Insulators Ehud Altman Department of Condensed Matter Physics The Weizmann Institute of Science With:
Thermodynamics and dynamics of systems with long range interactions David Mukamel.
Collin Broholm Johns Hopkins University and NIST Center for Neutron Research Quantum Phase Transition in Quasi-two-dimensional Frustrated Magnet M. A.
Giovanni Ramírez, Javier Rodríguez-Laguna, Germán Sierra Instituto de Física Teórica UAM-CSIC, Madrid Workshop “Entanglement in Strongly Correlated Systems”
Quantum State Transferring through Spin Chains Abolfazl Bayat Sharif University of Technology Tehran, Iran. IICQI September 2007 Kish Island, Iran.
Panjin Kim*, Hosho Katsura, Nandini Trivedi, Jung Hoon Han
One Dimensional Magnetic Systems Strong Fluctuations in Condensed Matter Magnetism in one dimension Pure systems Doped systems Magnetized states Conclusions.
Collin Broholm Johns Hopkins University and NIST Center for Neutron Research Quantum Phase Transition in Quasi-two-dimensional Frustrated Magnet M. A.
NTNU 2011 Dimer-superfluid phase in the attractive Extended Bose-Hubbard model with three-body constraint Kwai-Kong Ng Department of Physics Tunghai University,
Solving Impurity Structures Using Inelastic Neutron Scattering Quantum Magnetism - Pure systems - vacancies - bond impurities Conclusions Collin Broholm*
Measures of Entanglement at Quantum Phase Transitions
Quantum entanglement, Kondo effect, and electronic transport in
Conductance of nanosystems with interaction
Chengfu Mu, Peking University
Spin-triplet molecule inside carbon nanotube
Hiroyuki Nojiri, Department of Physics, Okayama University
Computational approaches for quantum many-body systems
Kensuke Homma / Hiroshima Univ. from PHENIX collaboration
The half-filled Landau level: The case for Dirac composite fermions
Presentation transcript:

Kondo Physics from a Quantum Information Perspective Pasquale Sodano International Institute of Physics, Natal, Brazil

Sougato Bose UCL (UK) Abolfazl Bayat UCL (UK) Henrik Johannesson Gothenburg (Sweden)

References An order parameter for impurity systems at quantum criticality A. Bayat, H. Johannesson, S. Bose, P. Sodano To appear in Nature Communication. Entanglement probe of two-impurity Kondo physics in a spin chain A. Bayat, S. Bose, P. Sodano, H. Johannesson, Phys. Rev. Lett. 109, 066403 (2012) Entanglement Routers Using Macroscopic Singlets A. Bayat, S. Bose, P. Sodano, Phys. Rev. Lett. 105, 187204 (2010) Negativity as the Entanglement Measure to Probe the Kondo Regime in the Spin-Chain Kondo Model A. Bayat, P. Sodano, S. Bose, Phys. Rev. B 81, 064429 (2010) Kondo Cloud Mediated Long Range Entanglement After Local Quench in a Spin Chain P. Sodano, A. Bayat, S. Bose Phys. Rev. B 81, 100412(R) (2010)

Contents of the Talk Negativity as an Entanglement Measure Single Kondo Impurity Model Application: Quantum Router Two Impurity Kondo model: Entanglement Two Impurity Kondo model: Entanglement Spectrum

Entanglement of Mixed States Separable states: Entangled states: How to quantify entanglement for a general mixed state? There is not a unique entanglement measure

Negativity Separable: Valid density matrix Entangled: Negativity:

Gapped Systems Excited states Ground state The intrinsic length scale of the system impose an exponential decay

Gapless Systems Continuum of excited states Ground state There is no length scale in the system so correlations decay algebraically

Kondo Physics Despite the gapless nature of the Kondo system, we have a length scale in the model

Realization of Kondo Effect Semiconductor quantum dots D. G. Gordon et al. Nature 391, 156 (1998). S.M. Cronenwett, Science 281, 540 (1998). Carbon nanotubes J. Nygard, et al. Nature 408, 342 (2000). M. Buitelaar, Phys. Rev. Lett. 88, 156801 (2002). Individual molecules J. Park, et al. Nature 417, 722 (2002). W. Liang, et al, Nature 417, 725–729 (2002).

Kondo Spin Chain E. S. Sorensen et al., J. Stat. Mech., P08003 (2007)

Entanglement as a Witness of the Cloud B Impurity L

Entanglement versus Length Entanglement decays exponentially with length

Scaling Impurity A B L N-L-1 Kondo Regime: Dimer Regime:

Scaling of the Kondo Cloud Kondo Phase: Dimer Phase:

Application: Quantum Router Converting useless entanglement into useful one through quantum quench

Simple Example

Extended Singlet With tuning J’ we can generate a proper cloud which extends till the end of the chain

Quench Dynamics

Attainable Entanglement 1- Entanglement dynamics is very long lived and oscillatory 2- maximal entanglement attains a constant values for large chains 3- The optimal time which entanglement peaks is linear

Distance Independence For simplicity take a symmetric composite:

Optimal Quench

Optimal Parameter

Non-Kondo Singlets (Dimer Regime) Clouds are absent K: Kondo (J2=0) D: Dimer (J2=0.42)

Asymmetric Chains

Entanglement in Asymmetric Chains Symmetric geometry gives the best output

Entanglement Router

Two Impurity Kondo Model

Two Impurity Kondo Model RKKY interaction

Impurities Entanglement

Entanglement of Impurities Entanglement can be used as the order parameter for differentiating phases

Scaling at the Phase Transition The critical RKKY coupling scales just as Kondo temperature does

Entropy of Impurities Triplet Identity Singlet

Impurity-Block Entanglement

Block-Block Entanglement

2nd Order Phase Transition

Order Parameter for Two Impurity Kondo Model

Order Parameter Order parameter is: 1- Observable 2- Is zero in one phase and non-zero in the other 3- Scales at criticality Landau-Ginzburg paradigm: 4- Order parameter is local 5- Order parameter is associated with a symmetry breaking

Entanglement Spectrum

Entanglement Spectrum NA=NB=400 J’=0.4 NA=600, NB=200 J’=0.4

Schmidt Gap Schmidt gap:

Thermodynamic Behaviour J’=0.4 J’=0.5 In the thermodynamic limit Schmidt gap takes zero in the RKKY regime

In the thermodynamic limit the first derivative of Diverging Derivative In the thermodynamic limit the first derivative of Schmidt gap diverges

Diverging Kondo Length

Finite Size Scaling

Schmidt Gap as an Observable

Summary Negativity is enough to determine the Kondo length and the scaling of the Kondo impurity problems. By tuning the Kondo cloud one can route distance independent entanglement between multiple users via a single bond quench. Negativity also captures the quantum phase transition in two impurity Kondo model. Schmidt gap, as an observable, shows scaling with the right exponents at the critical point of the two Impurity Kondo model.

References An order parameter for impurity systems at quantum criticality A. Bayat, H. Johannesson, S. Bose, P. Sodano To appear in Nature Communication. Entanglement probe of two-impurity Kondo physics in a spin chain A. Bayat, S. Bose, P. Sodano, H. Johannesson, Phys. Rev. Lett. 109, 066403 (2012) Entanglement Routers Using Macroscopic Singlets A. Bayat, S. Bose, P. Sodano, Phys. Rev. Lett. 105, 187204 (2010) Negativity as the Entanglement Measure to Probe the Kondo Regime in the Spin-Chain Kondo Model A. Bayat, P. Sodano, S. Bose, Phys. Rev. B 81, 064429 (2010) Kondo Cloud Mediated Long Range Entanglement After Local Quench in a Spin Chain P. Sodano, A. Bayat, S. Bose Phys. Rev. B 81, 100412(R) (2010)