To the adaptive multibody gravity assists tours design in Jovian system for the Ganymede Landing. Grushevskii A.

Slides:



Advertisements
Similar presentations
Mars/moon impact rate ratio: 2000/2012 comparison Impact craters as a link to other terrestrial planets, satellites and asteroids Interplanetary comparisons.
Advertisements

Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, Miusskaya pl. 4, Moscow, Russia Lavochkin Research and Production Association,
15th AAS/AIAA Space Flight Mechanics Meeting, Copper Mountain, Colorado Low Energy Interplanetary Transfers Using the Halo Orbit Hopping Method with STK/Astrogator.
The ballistic support of the “SPECTR-RG” spacecraft flight to the L2 point of the Sun-Earth system I.S. Ilin, G.S. Zaslavskiy, S.M. Lavrenov, V.V. Sazonov,
MAE 4262: ROCKETS AND MISSION ANALYSIS Orbital Mechanics and Hohmann Transfer Orbit Summary Mechanical and Aerospace Engineering Department Florida Institute.
Golubev Yu.F., Grushevskii A.V., Koryanov V.V., Tuchin A.G. A Method of Orbits Designing Using Gravity Assist Maneuvers to the Landing.
Reconnection at Ganymede: Work in Progress Bill Paterson & Glyn Collinson NASA GSFC.
Golubev Yu.F., Grushevskii A.V., Koryanov V.V., Tuchin A.G. A method of orbits designing using gravity assist maneuvers to the landing.
Институт прикладной математики им. М.В.Келдыша РАН Keldysh Institute of Applied Mathematics, Russian Academy of Sciences.
Advanced method of virtual trajectories for the preliminary design of gravity-assist missions Sergey Trofimov Keldysh Institute of Applied Mathematics.
В.В.Сидоренко (ИПМ им. М.В.Келдыша РАН) А.В.Артемьев, А.И.Нейштадт, Л.М.Зеленый (ИКИ РАН) Квазиспутниковые орбиты: свойства и возможные применения в астродинамике.
Possible Orbits for the First Russian/Brazilian Space Mission Alexander A. Sukhanov Space Research Institute (IKI) of Russian Academy of Sciences Moscow,
1 The Jovian Planets. 2 Topics l Introduction l Images l General Properties l General Structure l Jupiter l Summary.
Further development of modeling of spatial distribution of energetic electron fluxes near Europa M. V. Podzolko 1, I. V. Getselev 1, Yu. I. Gubar 1, I.
Ballistics and navigation support for the Venera-D mission V. A. Shishov 1, V. A. Stepaniants 1, A. G. Tuchin 1, S. M. Lavrenov 2 (1)Keldysh Institute.
AAE450 Spring 2009 Analysis of Trans-Lunar Spiral Trajectory [Levi Brown] [Mission Ops] February 12,
Physics 202: Introduction to Astronomy – Lecture 4 Carsten Denker Physics Department Center for Solar–Terrestrial Research.
INSTITUTO DE SISTEMAS E ROBÓTICA 1/31 Optimal Trajectory Planning of Formation Flying Spacecraft Dan Dumitriu Formation Estimation Methodologies for Distributed.
Chpt. 5: Describing Orbits By: Antonio Batiste. If you’re flying an airplane and the ground controllers call you on the radio to ask where you are and.
University of Paderborn Applied Mathematics Michael Dellnitz Albert Seifried Applied Mathematics University of Paderborn Energetically efficient formation.
COMETS, KUIPER BELT AND SOLAR SYSTEM DYNAMICS Silvia Protopapa & Elias Roussos Lectures on “Origins of Solar Systems” February 13-15, 2006 Part I: Solar.
Morehead State University Morehead, KY Prof. Bob Twiggs Understanding Orbits Orbit Facts 1.
SNAP Spacecraft Orbit Design Stanford University Matthew Peet.
Method of Virtual Trajectories for the Preliminary Design of Multiple Gravity-Assist Interplanetary Trajectories Sergey Trofimov Keldysh Institute of Applied.
Samara State Aerospace University (SSAU) Samara 2015 SELECTION OF DESIGN PARAMETERS AND OPTIMIZATION TRAJECTORY OF MOTION OF ELECTRIC PROPULSION SPACECRAFT.
AE 1350 Lecture #14 Introduction to Astronautics.
29 th October 2012, Pasadena. Team 5 Lorenzo Casalino, professor † Guido Colasurdo, professor ‡ Stefano Federici, master student ‡ Francesca Letizia,
Two Interesting (to me!) Topics Neither topic is in Goldstein. Taken from the undergraduate text by Marion & Thornton. Topic 1: Orbital or Space Dynamics.
1 Samara State Aerospace University (SSAU) Modern methods of analysis of the dynamics and motion control of space tether systems Practical lessons Yuryi.
Nacht van Saturnus.
IPPW-9, Toulouse 2012A. Sánchez Hernández, UPC D YNAMICAL STUDY OF THE AEROBRAKING TECHNIQUE IN THE ATMOSPHERE OF M ARS Alberto Sánchez Hernández ETSEIAT.
© Lavochkin Association, 2013 Ganymede Lander mission overview.
Galileo Missions to Juptier Craig Lieneck. Galileo Spacecraft One of the most complex robotic spacecraft ever flown. Consists of two spacecrafts: –Orbiter:
Radiation environment estimates for Europa lander mission M. V. Podzolko 1, I. V. Getselev 1, Yu. I. Gubar 1, I. S. Veselovsky 1,2, A. A. Sukhanov 2 1.
Main characteristics: systematic global search algorithm of quasi-ballistic trajectories; Gravity assist (GA) and Aerogravity assist (AGA) manoeuvres;
Team 5 Moscow State University Department of Mechanics and Mathematics I.S. Grigoriev, M.P. Zapletin 3rd Global.
V.V.Sidorenko (Keldysh Institute of Applied Mathematics, Moscow, RUSSIA) A.V.Artemyev, A.I.Neishtadt, L.M.Zelenyi (Space Research Institute, Moscow, RUSSIA)
ICTCM Using Satellite Orbits and Space Travel with Game-Quality Simulations in Math and Physics Classes from High School through College Frank Wattenberg.
Space Mission Design: Interplanetary Super Highway Hyerim Kim Jan. 12 th st SPACE Retreat.
1 Developed by Jim Beasley – Mathematics & Science Center –
Orbital Mechanics Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Orbital Mechanics Energy and velocity in orbit Elliptical orbit parameters.
1B11 Foundations of Astronomy The Jovian Planets Silvia Zane, Liz Puchnarewicz
SKOBELTSYN INSTITUTE OF NUCLEAR PHYSICS, LOMONOSOV MOSCOW STATE UNIVERSITY, RUSSIA Radiation Conditions of a Mission to Jupiter ʼ s Moon Ganymede M. V.
Proportionality between the velocity V and radius r
University of Colorado Boulder ASEN 6008 Interplanetary Mission Design Spring 2015 Kate Davis Tisserand Plots 1.
2 Jun 2022 Jan 2030 Sep 2032 Jun months 1 month 9 months 11 months 9 months Launch Ariane-5 Jupiter orbit insertion Transfer to Callisto Europa.
ASEN 5050 SPACEFLIGHT DYNAMICS Interplanetary Prof. Jeffrey S. Parker University of Colorado – Boulder Lecture 29: Interplanetary 1.
Science investigations in the framework of expedition to Europa
The Solar System Missions. planets not shown to scale >> MercuryVenusEarthMarsJupiterSaturnUranusNeptunePluto Mean Distance from the Sun (AU)
Mission Development: Putting It All Together ASEN 6008 Interplanetary Mission Design.
The Jovian Planets. The Jovian, or gaseous, planets have rocky cores surrounded by thick atmospheres. The radius is measured to the point at which the.
Orbit Determination Dynamics of Satellite Motion.
Optimal parameters of satellite–stabilizer system in circular and elliptic orbits 2nd International Workshop Spaceflight Dynamics and Control October 9-11,
In your Table of Contents…
FLY-BY ME TO THE MOON LESSONS LEARNED ON CLOSE ENCOUNTERS Ettore Perozzi Deimos Space 1.
The Motion of Planets Kepler’s laws Johannes Kepler.
Small Spacecraft Interplanetary Missions: The Art of Trajectory Design Mikhail Ovchinnikov Keldysh Institute of Applied Mathematics Maksim Shirobokov Keldysh.
Hyperbolas Objective: graph hyperbolas from standard form.
Different scenarios of the “Venera-D” mission KIAM Ballistic Center Team (Keldysh Institute Of Applied Mathematics RAS)
Celestial Mechanics V Circular restricted three-body problem
JUpiter Icy Moons Explorer (JUICE)
Terrain Reconstruction Method Based on Weighted Robust Linear Estimation Theory for Small Body Exploration Zhengshi Yu, Pingyuan Cui, and Shengying Zhu.
Lunar Trajectories.
NH 3rd Stage Trajectory Prediction
N. André, with inputs from J. Cooper
T. Schildknecht, A. Vananti, A. Hinze
Satellites of the Solar System: the Moons of Jupiter
Try Lam Jennie R. Johannesen Theresa D. Kowalkowski
Zhaohua Yi 1,2, Guangyu Li 1 Gerhard Heinzel 3, Oliver Jennrich 4
Presentation transcript:

To the adaptive multibody gravity assists tours design in Jovian system for the Ganymede Landing. Grushevskii A.

24th International Symphosium on Space Flight Dynamics, May 5-9, 2014 Keldysh Institute of Applied Mathematics Russian Academy of Sciences Grushevskii A.V., Golubev Yu.F, Koryanov V.V., Tuchin A.G. To the adaptive multibody gravity assist tours design in Jovian system for the Ganymede Landing 24th International Symphosium on Space Flight Dynamics, May 5-9, 2014

ESA- JUICE MISSION

ESA- JUICE Mission Debut Interplanetary part- Ganymede Flyby- JOI- G&C-Flyby Sequence GOI

Roskosmos part: +Ganymede Landing Flexible JOI Data Flexible G&C-Flyby Sequence GOI Ganymede Circular Orbit Landing

MaiN Problems -Min Delta V (ballistic scenarios, if it’s possible) -Radiation Doze Accumulation (TILD) -Duration -Min V-infinity relative Ganymede

Roscosmos part: Ganymede Landing. Resonance beginning. Typical scenario Moon Orbital period of SC after the satellite flyby rated to satellite’s orbital period Number of rounds after a flyby Ganymede 6 1 5 2 4 3 2.5 ESTK complex of Keldysh IAM RAS Ballistic Center Navigation and Ancillary Information Facility (NAIF) - NASA Refined Flyby Model

Quasi-Singularity of the Radiation Hazard

Joining to Jovian System After Interplanetary Part Time of Jovian sphere of action 2029/06/03 09:25:10 UTC Flyby hyperbola ( J2000) Semimajor axe, km 5252.572592 Eccentricity 1.163115 Inclination 23.44 grad V-Infinity, km/s 4.91 Pericenter Time 2029/08/29 17:20:35 UTC Pericenter altitude 12.5 RJ

1 GAM (near Ganymede) Callisto Europa IO Ganymede Time of minimal distance reaching 2030/04/25 12:55:52 Minimal distance 18.119618 1000 km Height of pericenter of flyby hyperbola 15.485618 1000 km Asymptotic velocity 6.794698 Change of velocity relatively to Jupiter -0.040897 Period after flyby of GANYMEDE 42.915096 days Distance in pericenter rated to Jupiter’s radius 11.503787 Eccentricity after flyby 0.767555 Velocity in pericenter after flyby 16.511564 Velocity in apocenter after flyby 2.171381 Vx=0.000755, Vy= 0.005958, Vz=0.003207, |V|=0.006808

2 GAM Time of minimal distance reaching 2030/06/07 11:18:06 Minimal distance 13.702676 1000 km Height of pericenter of flyby hyperbola 11.068676 1000 km Asymptotic velocity 6.761808 Change of velocity relatively to Jupiter -0.046064 Period after flyby of GANYMEDE 35.762581 days Distance in pericenter rated to Jupiter’s radius 11.268810 Eccentricity after flyby 0.742874 Velocity in pericenter after flyby 16.565945 Velocity in apocenter after flyby 2.443969 Vx-0.004218, Vy=0.002570, Vz=0.001342, |V|=0.005118

3 GAM Time of minimal distance reaching 2030/08/18 00:23:08 Minimal distance 9.464318 1000 km Height of pericenter of flyby hyperbola 6.830318 1000 km Asymptotic velocity 6.747614 Change of velocity relatively to Jupiter -0.057707 Period after flyby of GANYMEDE 28.610065 days Distance in pericenter rated to Jupiter’s radius 10.908290 Eccentricity after flyby 0.711178 Velocity in pericenter after flyby 16.683664 Velocity in apocenter after flyby 2.815964 Vx=-0.014865, Vy=0.012230, Vz=0.004934, |V|=0.019872

4 GAM Time of minimal distance reaching 2030/09/15 15:30:37 Minimal distance 6.338138 1000 km Height of pericenter of flyby hyperbola 3.704138 1000 km Asymptotic velocity 6.724214 Change of velocity relatively to Jupiter -0.078352 Period after flyby of GANYMEDE 21.457549 days Distance in pericenter rated to Jupiter’s radius 10.356952 Eccentricity after flyby 0.667801 Velocity in pericenter after flyby 16.903565 Velocity in apocenter after flyby 3.366919 Vx=-0.003701, Vy=0.003109, Vz=0.001477, |V|=0.005055

5 GAM Time of minimal distance reaching 2030/10/07 02:25:05 Minimal distance 8.641858 1000 km Height of pericenter of flyby hyperbola 6.007858 1000 km Asymptotic velocity 6.746652 Change of velocity relatively to Jupiter -0.068217 Period after flyby of GANYMEDE 17.881290 days Distance in pericenter rated to Jupiter’s radius 9.929413 Eccentricity after flyby 0.640352 Velocity in pericenter after flyby 17.120993 Velocity in apocenter after flyby 3.753786 Vx=-0.001707, Vy=0.005016, Vz=0.002694, |V|=0.005944

6 GAM Time of minimal distance reaching 2030/11/12 04:29:38 Minimal distance 6.051283 1000 km Height of pericenter of flyby hyperbola 3.417283 1000 km Asymptotic velocity 6.727114 Change of velocity relatively to Jupiter -0.095345 Period after flyby of GANYMEDE 14.305032 days Distance in pericenter rated to Jupiter’s radius 9.273662 Eccentricity after flyby 0.610227 Velocity in pericenter after flyby 17.552545 Velocity in apocenter after flyby 4.248788 Vx=-0.006027, Vy=0.003142, Vz=-0.000433, |V|=0.006811

Quasi-Singularity of the Radiation Hazard

Gravity-assist sequence. Effective Type T1

RADIATION HAZARD PROBLEM (M. Podzolko e.a., SINP MSU Data)

Typical radiation hazard analysis on the ENDGAME phase Dynamics of the radiation accumulation

Typical radiation hazard analysis on the ENDGAME phase Dynamics of the radiation accumulation- zoom scale

Dynamics of the radiation accumulation- on one orbit. Quasi-singularity Period after flyby of GANYMEDE 42.9 days Distance in pericenter rated to Jupiter’s radius 11.5 Distance in apocenter rated to Jupiter’s radius 98.0

Ti (Tisserand’s Criterion) Restricted 3 Body Problem Jacobi Integral J Tisserands Parameter T (see R.Russel, S.Campagnola) “Isoinfine” (“Captivity”)

Tisserand-Poincare graph (N. Strange, J. Sims, K. Kloster, J Tisserand-Poincare graph (N.Strange, J.Sims, K.Kloster, J.Longuski axes Rp-T (A.Labunskii, O.Papkov, K.Sukhanov axes Ra-Rp- the same)

TP-strategy(axes Ra-Rp in RJ)

CB-Classic Billiard Duplex Shutting CGB-Classic Gravitational Billiard

Using PHASE BEAM method of Gravity Assists Sequences Determination

Previous front trees of Tisserand graph for Russian “Laplace” mission

Previous Tisserand Graph for the Roscosmos “Laplace” mission

Phase Selection We need the criterion of selection of encounters for V-infinity reduction The “Magic” code is: “Ganymede”+”Not Ganymede”+”Ganymede” Or “G”^”C”^…^”C”^”G”

Rebounds+ReRebounds (axes Ra-Rp)

Real Phase Searching(axes Ra-Rp in RJ) Rebounds Rebounds-ReRebounds

“JUICE” by ESA Tisserand-Poincare typical graph

Research basement Orbit correction algorithm preceding spacecraft’s Jovian moons gravity assists Gravity assists refined model ESTK KIAM RAS Ballistic centre complex Navigation and Ancillary Information Facility (NAIF) - NASA ephemeris — will be refined during JUICE by ESA

Fly-by sequence selection strategy Lambert problem solution; The phase-beams method; Delta V minimizations; Gravity-assist parameters permanent corrections; Simulations results are presented.

Gravity-assist sequence. Effective Type T1

Part II of radiation-comfortable tour

Low-radiation sequence type T2

Type: Hyper-low-radiation, Expensive Delta V

«Endgame» (S.Campagnola, R.Russel, 2011)

Virtual Trajectories Splitting After Swing-by

Applications for Another Kinds of Flybys

Callisto & Ganymede assists us to minimize fuel requirements Tour design problem lends itself well to optimization schemes Callisto & Ganymede assists us to minimize fuel requirements

Thank you for your attention !