Electric Quadrupole Transitions in the Band of Oxygen: a Case Study Iouli E. Gordon Samir Kassi Alain Campargue Geoffrey C. Toon a 1  g — X 3  g -

Slides:



Advertisements
Similar presentations
The HITRAN Molecular Database
Advertisements

Spectral shapes modeling and remote sensing of greenhouse gases. Toward the OCO and GOSAT experiments and future HITRAN issues.
High sensitivity CRDS of the a 1 ∆ g ←X 3 Σ − g band of oxygen near 1.27 μm: magnetic dipole and electric quadrupole transitions in different bands of.
Yu. I. BARANOV and W. J. LAFFERTY Optical Technology Division Optical Technology Division National Institute of Standards and Technology, Gaithersburg,
F EMTO -FANTASIO: A VERSATILE EXPERIMENTAL SET - UP TO INVESTIGATE MOLECULAR COMPLEXES K. D IDRICHE, C. L AUZIN, X. DE G HELLINCK, T. F ÖLDES, AND M. H.
Revision of Spectral Parameters for the B- and γ-Bands of Oxygen and their Validation using Atmospheric Spectra with the Sun as Source 66 th International.
Measurement of trace atmospheric constituents by cw cavity ring-down spectroscopy A.J. Orr-Ewing, M. Pradhan, R. Grilli, T.J.A. Butler, D. Mellon, M.S.I.
Spectroscopy for Hot Super- Earth Exoplanets P. F. Bernath and M. Dulick Department of Chemistry & Biochemistry Old Dominion University, Norfolk, VA.
1 TCCON at Caltech, May 2008 New Line Parameters for Near-IR Methane and the Oxygen A-Band presented by Linda R. Brown (JPL) World-wide Effort Belgium,
Analysis of the 18 O 3 CRDS spectra in the 6000 – 7000 cm -1 spectral range : comparison with 16 O 3. Marie-Renée De Backer-Barilly, Alain Barbe, Vladimir.
* The number of transitions listed in this column are for the equivalent number of isotopologues and spectral range consistent with HITEMP2010 Comparison.
S&MPO linelist of 16 O 3 in the range 6000 – 7000 cm -1. M.-R. De Backer-Barilly #, Semen N. Mikhailenko*, Yurii Babikov*, Alain Campargue §, Samir Kassi.
Some Details of the Upcoming HITRAN Updates for the New Edition of 2008 Laurence S. Rothman, Iouli E. Gordon Harvard-Smithsonian Center for Astrophysics,
A. Barbe, M.R. De Backer-Barilly, Vl.G. Tyuterev, A. Campargue 1, S.Kassi 1 Updated line-list of 16 O 3 in the range 5860 – 7000 cm -1 deduced from CRDS.
 ( ) 0+   ( ) 0–  4 1 Results at 2.5 microns 2 +( ) 1 II (
9th HITRAN Database & Atmospheric Spectroscopy Applications conferences Formaldehyde broadening coefficients Agnès Perrin Laboratoire Interuniversitaire.
Laser spectroscopic study of ozone in the 100←000 band for the SWIFT instrument M. Guinet, C. Janssen, D. Mondelain, C. Camy-Peyret LPMAA, CNRS- UPMC (France)
Theoretical work on the water monomer Matt Barber Jonathan Tennyson University College London
Molecular Databases: Evolution and Revolution Laurence S. Rothman Iouli E. Gordon Harvard-Smithsonian Center for Astrophysics Atomic and Molecular Physics.
Towards New Line List of Magnetic Dipole and Electric Quadrupole Transitions in the Band of Oxygen Iouli E. Gordon Laurence S. Rothman Samir Kassi Alain.
SPECTRA, an Internet Accessible Information System for Spectroscopy of Atmospheric Gases Semen MIKHAILENKO, Yurii BABIKOV, Vladimir.
IR EMISSION SPECTROSCOPY OF AMMONIA: LINELISTS AND ASSIGNMENTS. R. Hargreaves, P. F. Bernath Department of Chemistry, University of York, UK N. F. Zobov,
LINE PARAMETERS OF WATER VAPOR IN THE NEAR- AND MID-INFRARED REGIONS DETERMINED USING TUNEABLE LASER SPECTROSCOPY Nofal IBRAHIM, Pascale CHELIN, Johannes.
Experimental Energy Levels of HD 18 O and D 2 18 O S.N. MIKHAILENKO, O.V. NAUMENKO, S.A. TASHKUN Laboratory of Theoretical Spectroscopy, V.E. Zuev Institute.
First high resolution analysis of the 5 3 band of nitrogen dioxide (NO 2 ) near 1.3 µm Didier Mondelain 1, Agnès Perrin 2, Samir Kassi 1 & Alain Campargue.
Masters Course: Experimental Techniques Detection of molecular species (with lasers) Techniques Direct absorption techniques Cavity Ring Down Cavity Enhanced.
Einstein A coefficients for vibrational-rotational transitions of NO
Jet Propulsion Laboratory California Institute of Technology The College of William and MaryUniversity of Lethbridge.
Towards perfect water line intensities Lorenzo Lodi University College London, Dept of physics & Astronomy, London, UK.
Atomic Spectroscopy for Space Applications: Galactic Evolution l M. P. Ruffoni, J. C. Pickering, G. Nave, C. Allende-Prieto.
Ab initio classical dynamics simulations of CO 2 line-mixing effects in infrared and Raman bands Julien LAMOUROUX, Jean-Michel HARTMANN, Ha TRAN L.I.S.A.,
Self- and Air-Broadening, Shifts, and Line Mixing in the ν 2 Band of CH 4 M. A. H. Smith 1, D. Chris Benner 2, V. Malathy Devi 2, and A. Predoi-Cross 3.
Self- and air-broadened line shape parameters in the band of 12 CH 4 : cm -1 V. Malathy Devi Department of Physics The College of William.
LINE PARAMETERS OF THE PH 3 PENTAD IN THE 4-5 µm REGION V. MALATHY DEVI and D. CHRIS BENNER College of William and Mary I.KLEINER CNRS/IPSL-Universites.
Infrared spectroscopy of halogen-containing species for atmospheric remote sensing Jeremy J. Harrison University of York.
Hot summer of HITRAN2008 I. E. Gordon L. S. Rothman.
Methyl Bromide : Spectroscopic line parameters in the 7- and 10-μm region D. Jacquemart 1, N. Lacome 1, F. Kwabia-Tchana 1, I. Kleiner 2 1 Laboratoire.
Methyl Bromide : Spectroscopic line parameters in the 10-μm region D. Jacquemart 1, N. Lacome 1, F. Kwabia-Tchana 1, I. Kleiner 2 1 Laboratoire de Dynamique,
Temperature dependence of N 2 -, O 2 -, and air-broadened half- widths of water vapor transitions R. R. Gamache, B. K. Antony and P. R. Gamache Dept. of.
Yu. I. BARANOV, W. J. LAFFERTY, and G. T. Fraser Optical Technology Division Optical Technology Division National Institute of Standards and Technology,
Evaluation of the Experimental and Theoretical Intensities of Water- Vapor Lines in the 2 µm Region Using Spectra from the Solar- Pointing FTS Iouli Gordon,
MICROWAVE SPECTRUM OF 12 C 16 O S.A. TASHKUN and S.N. MIKHAILENKO, Laboratory of Theoretical Spectroscopy, V.E. Zuev Institute of Atmospheric Optics, Zuev.
© 2009 SRI International TEMPERATURE DEPENDENCE OF THE VIBRATIONAL RELAXATION OF OH(  = 1, 2) by O, O 2, AND CO 2 Constantin Romanescu, Henry Timmers,
Methodic of measurement the greenhouse gases Gnedykh V., and work team of experiments: RUSALKA and ORAKUL.
A COMPREHENSIVE INTENSITY STUDY OF THE 4 TORSIONAL BAND OF ETHANE J. NOROOZ OLIAEE, N. Moazzen-Ahmadi Institute for Quantum Science and Technology Department.
1 Atmospheric Radiation – Lecture 7 PHY Lecture 7 Thermal Radiation.
Linhan Shen1, Thinh Bui1, Lance Christensen2, Mitchio Okumura1
A. Barbe, M.-R. De Backer-Barilly, Vl.G. Tyuterev Analysis of CW-CRDS spectra of 16 O 3 : 6000 to 6200 cm -1 spectral range Groupe de Spectrométrie Moléculaire.
CH 3 D Near Infrared Cavity Ring-down Spectrum Reanalysis and IR-IR Double Resonance S. Luna Yang George Y. Schwartz Kevin K. Lehmann University of Virginia.
Collision-Dependent Line Areas in the a 1 Δ g ←X 3 Σ − g Band of O 2 Vincent Sironneau, Adam J. Fleisher,* and Joseph T. Hodges Material Measurement Laboratory.
Microwave Spectroscopy Wave length ~ 1 cm to 100  m Wave number ~ 1 to 100 cm -1. Frequency ~ 3 x to 3 x Hz Energy ~ 10 to 1000 Joules/mole.
D. Mondelain, A. Campargue, S. Kassi Laboratoire Interdisciplinaire de Physique Université Grenoble 1/CNRS The water vapor self-continuum in the 1.6 µm.
Ro-vibrational Line Lists for Nine Isotopologues of CO Suitable for Modeling and Interpreting Spectra at Very High Temperatures and Diverse Environments.
FTS Studies Of The Isotopologues Of CO 2 Toward Creating A Complete And Highly Accurate Reference Standard Ben Elliott, Keeyoon Sung, Charles Miller JPL,
INTRACAVITY LASER SPECTRA OF METHANE 790 AND 861 nm BANDS AT LOW TEMPERATURES SADASIVAN SHAJI and JAMES J O’BRIEN Department of Chemistry & Biochemistry.
Champaign, June 2015 Samir Kassi, Johannes Burkart Laboratoire Interdisciplinaire de Physique, Université Grenoble 1, UMR CNRS 5588, Grenoble F-38041,
Line mixing and collision induced absorption in the A-band of molecular oxygen: catching oxygen in collisions! Wim J. van der Zande, Maria Kiseleva +,
1 Atmospheric Radiation – Lecture 13 PHY Lecture 13 Remote sensing using emitted IR radiation.
Rotational and Hyperfine Analyses of the Band of 17 O- Containing Isotopologues of Oxygen Measured by CRDS at Room and Liquid Nitrogen Temperatures Olga.
Predissociation of the A 2  + state of the SH (SD) radical A.J. Orr-Ewing, R.A. Rose, C.-H. Yang, K. Vidma and D.H. Parker.
EXPERIMENTAL LINE LISTS OF HOT METHANE Image credit: Mark Garlick MONDAY 22 nd JUNE 2015 ROBERT J. HARGREAVES MICHAEL DULICK PETER F.
National Institute of Standards and Technology
Analysis of bands of the 405 nm electronic transition of C3Ar
Z. Reed,* O. Polyansky,† J. Hodges*
Comb-Assisted Cavity Ring Down Spectroscopy
Advertisement.
A. Barbe, M. R. De Backer-Barilly, Vl. G. Tyuterev, D. Romanini1, S
An accurate and complete empirical line list for water vapor
Cavity Ring-down Spectroscopy Of Hydrogen In The nm Region And Corresponding Line Shape Implementation Into HITRAN Yan Tan (a,b), Jin Wang (a),
Calculations and first quantitative laboratory measurements of O2 A-band electric quadrupole line intensities and positions 16O2 b(1) ← X (1) PQ(11) magnetic.
Presentation transcript:

Electric Quadrupole Transitions in the Band of Oxygen: a Case Study Iouli E. Gordon Samir Kassi Alain Campargue Geoffrey C. Toon a 1  g — X 3  g -

Lowest electronic states of O 2 a 1  g X 3 Σ g - M1- Magnetic dipole E2- Electric quadrupole M1, E2 E2 Remote sensing in relation to high-accuracy measurements of atmospheric greenhouse gases such as CO 2 and CH 4 –Uniform mixing of oxygen provides calibration and removes systematic errors –ASCENDS mission Nightglow in planetary atmospheres M1>> E µm 0.76 µm b 1 Σ + g

FTS in Park Falls

Orr-Ewing et al. line list and HITRAN update in November 2009

Lowest electronic states of O 2 b 1 Σ + a 1  g X 3 Σ g - M1, E2 E2 F 1 (J=N+S) F 2 (J=N+S-1) F 3 (J=N-S) 1.27 µm 0.76 µm g

Quadrupole transitions e f e f f e e e f e J=±2J=±2  J=±1  J=0 T(9)S(10) R(9)S(8) P(9)O(10) S(9)S(9) O(9)O(9) N(9)O(8)S(9)R(10) R(9)R(9)P(9)P(9) O(9)P(8)R(9)Q(10) Q(9)Q(9) P(9)Q(8) J N=9 F1F1 F2F2 F3F3 Q(9)R(8) Q(9)P(10) Notation of branches: ΔN(N'')ΔJ(J'')

CRDS measurements in Grenoble laser ON Laser diode Photodiode Lambdameter Optical isolatorCoupler AO Modulator Laser OFF threshold =f(T,I) 6nm/diode 30 DFB diodes Routine sensitivity: cm -1, ie 1 % absorbance for 300 km path length Large dynamic range of the measured intensities: absorption coefficients from to cm -1 are measured on a single spectrum

CRDS measurements in Grenoble 16 quadrupole transitions were measured Line strengths equations calculation

Line strengths As derived by Balasubramanian and Narayanan [Acta Phys Hung 1994;74:341-53] based on the ideas on Watson [Can J Phys 1968;46: ] and Chiu [J Chem Phys 1965;42: ]

Line strengths equations

Quadrupole line list calculation Details of the calculations are given in Gordon et al (JQSRT 111 (2010) 1174–1183)

Inclusion of quadrupole  J = ±2 transitions

J=±2J=±2  J=0,±1  J=0,±1 and J=±2J=±2J=±2J=±2

Band Intensity and Emission Rate Integrated band intensity electric quadrupole (1.45±0.15)× cm - 1 /(molecule cm 2 ) Integrated band intensity (3.10±0.10) × cm -1 /(molecule cm 2 ) [J Chem Phys 1999;110:10749–57] Ratio ~ 215 In the A band Ratio ~ 120, 000 Einstein A-coefficient: (1.02±0.10) ×10 -6 s -1 Ab initio Einstein A-coefficient: 5 ×10 -7 s -1 [Klotz et al. Chem Phys 1984;89:223-36] If one corrects the degeneracy factors from ½ to 2/2 in theoretical calculation then the results agree very well

Lowest electronic states of O 2 b 1 Σ + a 1  g X 3 Σ g - M1, E2 E2 F 1 (J=N+S) F 2 (J=N+S-1) F 3 (J=N-S) 1.27 µm 0.76 µm g

Acknowledgements J.-F. Blavier, R. Washenfelder, P. Wennberg A. Orr-Ewing R. W. Field S. Yu NASA and ANR

Gamache RR, Goldman A. JQSRT 2001;69: