Photodisintegration and nuclear statistical quantities in astrophysics H. Utsunomiya (Konan University) SNP2008, Ohio University, July 8-11, 2008 Outline.

Slides:



Advertisements
Similar presentations
Simulating   Distributions What is   ? How are   ’s measured? What does the standard model predict? Simulating   distributions. Constraining the.
Advertisements

Hadron physics with GeV photons at SPring-8/LEPS II
HIGS2 Workshop June 3-4, 2013 Nuclear Structure Studies at HI  S Henry R. Weller The HI  S Nuclear Physics Program.
Photo-Nuclear Physics Experiments by using an Intense Photon Beam Toshiyuki Shizuma Gamma-ray Nondestructive Detection Research Group Japan Atomic Energy.
Lorentzian-like models of E1 radiative strength functions V. A. Plujko, O. M. Gorbachenko, E. V. Kulich Taras Shevchenko National Kyiv University, Ukraine.
Giant resonances, exotic modes & astrophysics
Spectroscopy at the Particle Threshold H. Lenske 1.
Structure of the ECEC candidate daughter 112 Cd P.E. Garrett University of Guelph TRIUMF Excellence Cluster “Universe”, Technische Universität München.
CEA DSM Irfu Shell evolution towards 100 Sn Anna Corsi CEA Saclay/IRFU/SPhN.
n_TOF meeting November 2007, BARI.
Proton Inelastic Scattering on Island-of-Inversion Nuclei Shin’ichiro Michimasa (CNS, Univ. of Tokyo) Phy. Rev. C 89, (2014)
Modeling of Photonuclear Reactions & Transmutation of Long-lived Nuclear Waste in High Photon Fluxes M.-L. GIACRI-MAUBORGNE, D. RIDIKAS, J.-C.
ROGER CABALLERO FOLCH, Barcelona, 9 th November 2011.
Nuclear Physics with ELI, Population/depopulation of Isomers: modification of nuclear level lifetime F. Gobet, C. Plaisir, F. Hannachi, M. Tarisien, M.M.
The simplified description of dipole radiative strength function V.A. Plujko, E.V.Kulich, I.M.Kadenko, O.M.Gorbachenko Taras Shevchenko National University.
Neutral Particles. Neutrons Neutrons are like neutral protons. –Mass is 1% larger –Interacts strongly Neutral charge complicates detection Neutron lifetime.
Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft Neutron capture cross sections on light nuclei M. Heil, F. Käppeler, E. Uberseder Torino workshop,

E.Chiaveri on behalf of the n_TOF Collaboration n_TOF Collaboration/Collaboration Board Lisbon, 13/15 December 2011 Proposal for Experimental Area 2(EAR-2)
Coupled-Channel Computation of Direct Neutron Capture and (d,p) reactions on Non- Spherical Nuclei Goran Arbanas (ORNL) Ian J. Thompson (LLNL) with Filomena.
GOVERNMENT OF ROMANIA Structural Instruments Sectoral Operational Programme „Increase of Economic Competitiveness” “Investments for Your Future”
Α - capture reactions using the 4π γ-summing technique Α. Lagoyannis Institute of Nuclear Physics, N.C.S.R. “Demokritos”
Structures of Exotic 131,133 Sn Isotopes for r-process nucleosynthesis Shisheng Zhang 1,2 ( 张时声 ) 1. School of Physics and Nuclear Energy Engineering,
Single-neutron structure of neutron-rich nuclei near 132 Sn Jolie A. Cizewski Department of Physics & Astronomy Rutgers University.
Searching for the Low-Energy Resonances in the 12 C( 12 C,n) 23 Mg Reaction Cross Section Relevant for S-Process Nucleosynthesis Brian Bucher University.
Photonuclear reactions in astrophysics
Gamma-ray strength functions obtained with the Oslo method Ann-Cecilie Larsen July 8, 2008 Workshop on Statistical Nuclear Physics and Applications in.
Ning Wang 1, Min Liu 1, Xi-Zhen Wu 2, Jie Meng 3 Isospin effect in Weizsaecker-Skyrme mass formula ISPUN14, , Ho Chi Minh City 1 Guangxi Normal.
Neutral pion photoproduction and neutron radii Dan Watts, Claire Tarbert University of Edinburgh Crystal Ball and A2 collaboration at MAMI Eurotag Meeting.
Presentation by T. Gogami 2015/6/15 (Mon). Equation state of neutron matter.
Athens, July 9, 2008 The two-step  cascade method as a tool for studying  -ray strength functions Milan Krtička.
Nuclear structure and fundamental interactions Solid state physics Material irradiation Micrometeorite research and study Astrophysics Nuclear astrophysics.
Determination of radiative neutron capture cross sections for unstable nuclei by Coulomb dissociation H. Utsunomiya (Konan University) Outline 1.Methodology.
I. Introductory remarks and present status II. Laboratory experiments and astrophysics III. Future options scenarios status and challenges new developments.
7. Gamma-ray strength functions Prof. Dr. A.J. (Arjan) Koning 1,2 1 Division of Applied Nuclear Physics, Department of Physics and Astronomy, Uppsala University,
LLNL-PRES This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.
Some aspects of reaction mechanism study in collisions induced by Radioactive Beams Alessia Di Pietro.
Anomalous two-neutron transfer in neutron-rich Ni and Sn isotopes studied with continuum QRPA H.Shimoyama, M.Matsuo Niigata University 1 Dynamics and Correlations.
Nuclear Structure SnSn P,n p n (  )‏ ( ,Xn)‏ M1E1 p,nn X λ ?E1 ExEx  Study of the pygmy dipole resonance as a function of deformation.
ExperimentSpokesmanGoalRunning time Thesis? Scissors ModeTonchevAnalyze Scissors Mode excitations in actinide nuclei Pgymy DipoleTonchevAnalyze evolution.
H.Sakurai Univ. of Tokyo Spectroscopy on light exotic nuclei.
Impact of phonon coupling on the radiative nuclear reaction characteristics O. Achakovskiy 1, A. Avdeenkov 1, S. Kamerdzhiev 2 Moscow| October 2015 | O.
Lomonosov Moscow State University Skobeltsyn Institute of Nuclear Physics V.Varlamov, EMIN-2009 (21 – 26 September) 1 V.A. Chetvertkova, B.S. Ishkhanov,
Fusion, transfer and breakup of light weakly bound nuclei at near barrier energies. Paulo R. S. Gomes Univ. Fed. Fluminense (UFF), Niteroi, Brazil Eurisol.
First Gogny conference, TGCC December 2015 DAM, DIF, S. Péru QRPA with the Gogny force applied to spherical and deformed nuclei M. Dupuis, S. Goriely,
Fusion of light halo nuclei
00 Cooler CSB Direct or Extra Photons in d+d  0 Andrew Bacher for the CSB Cooler Collaboration ECT Trento, June 2005.
ガンマ線強度関数法によるアプローチ H. Utsunomiya (Konan University) Outline 1.Methodology of the  SF method 2.Applications to unstable nuclei along the valley of  -stability.
(F.Cusanno, M.Iodice et al,Phys. Rev. Lett (2009). 670 keV FWHM  M. Iodice,F.Cusanno et al. Phys.Rev.Lett. 99, (2007) 12 C ( e,e’K )
LOMONOSOV MOSCOW STATE UNIVERSITY, SKOBELTSYN INSTITUTE OF NUCLEAR PHYSICS Multi-particle photodisintegration of heavy nuclei A.N. Ermakov, B.S. Ishkhanov,
Santa Tecla, 2-9 October 2005Marita Mosconi,FZK1 Re/Os cosmochronometer: measurements of relevant Os cross sections Marita Mosconi 1, Alberto Mengoni 2,
Nuclear and Radiation Physics, BAU, First Semester, (Saed Dababneh). 1.
Data Needs in Nuclear Astrophysics, Basel, June 23-25, 2006 Nuclear Astrophysics Resources of the National Nuclear Data Center B. Pritychenko*, M.W. Herman,
Exotic neutron-rich nuclei
Assessment of Physics, Applications and Construction Issues for the Proposed Magurele Short-Pulse Facility Silviu Olariu National Institute of Physics.
1 Cross sections of neutron reactions in S-Cl-Ar region in the s-process of nucleosynthesis C. Oprea 1, P. J. Szalanski 2, A. Ioan 1, P. M. Potlog 3 1Frank.
Radiative capture and photodisintegration reactions P. Scholz, AG Zilges, University of Cologne Radiative capture and photodisintegration reactions for.
Transverse and elliptic flows and stopping
the s process: messages from stellar He burning
Giant Monopole Resonance
7. Gamma-ray strength functions
V. A. Plujko Taras Shevchenko National University, Kyiv, Ukraine
Satoshi Adachi Research Center for Nuclear Physics (RCNP),
Study of the resonance states in 27P by using
On a Search for -Mesic Nuclei at MAMI-C
Astrophysical implications of the (n,
Elastic alpha scattering experiments
Phantom Crossing DGP Gravity
Pohang Neutron Facility (First Presentation of Prof. Cho’s Class)
Continuing Influence of Shell Effects in the Nuclear
Presentation transcript:

Photodisintegration and nuclear statistical quantities in astrophysics H. Utsunomiya (Konan University) SNP2008, Ohio University, July 8-11, 2008 Outline 1. Photodisintegration and nuclear statistical quantities 2. Case 1: E1  strength function in 181 Ta( ,n) 180 Ta 3. Case 2: Nuclear level density in 181 Ta( ,n) 180 Ta m 4. Case 3: M1  strength function in 91,92,94 Zr( ,n) 90,91,93 Zr 5. Summary

Konan U. H. Utsunomiya, T. Yamagata, H. Akimune AIST H. Toyokawa, T. Matsumoto, H. Harano JAEA H. Harada, S. Goko RCNP T. Shima NewSUBARU S. Miyamoto Texas A&M, USA Y.-W. Lui ULB, Brussels, Belgium S. Goriely CEA-Bruyères-le-Châtel, France S. Hilaire ZG Petten, The Netherlands A.J. Koning Collaborators

What can we do with real photons? r-process p-process s-process zPhotonuclear reactions are an excellent electromagnetic probe.  The universal role of photonucelar reactions is to investigate the  strength function and nuclear level density that are key nuclear ingredients for the p-, s-, and r-process. Nucleosynthesis of heavy elements through  SF and NLD ・ p-process ・ s-process ・ r-process Nucleosynthesis of light elements by the detailed balance

Nuclear Statistical Quantities in the Hauser-Feshbach model A(x,  )B (x=n, p, d, t, 3 He,  ) A + x B Optical potential continuum Discrete levels E x, J  Level density Mass, deformation Common to Radiative Capture and Photodisintegration RIPL Handbook/IAEA-TECDOC  -ray strength function

Photoreaction rates for nuclei in state  ExEx n  (E,T) Gamow peak SnSn (Z,A) (Z, A-1) ( ,n) (n,  ) ・ E1, M1  strength functions above and below Sn ・ Nuclear level densities ( ,  ’) Planck Distr. Brink hypothesis GDR is built on excited states. GDR  n (E) Key issues Neutron channel ( ,n)

181 Ta 180m 178 Hf 177 Hf 176 Hf 180g 180 W 182 W 183 W s process r process 181 W 179 Ta 180g 182 Ta 179 Hf 180m 181 Hf p process s process Origin of 180 Ta m Only naturally occurring isomer and nature’s rarest nuclide

1+1+ 9–9– 0 75 keV 180 Ta g > 1.2 x y 8.15 h 180 Ta m mediating excited states E x > 1 MeV Incident  -ray 181 Ta (Target) 181 Ta( ,n) 180 Ta 180 Ta p-process production of 180 Ta m 180 Ta gs and 180 Ta m are equilibrated under stellar condition through mediating excited states above 1 MeV. Total cross sections are needed.  total

s-process production of 180 Ta m 180 Ta Ta 7/2 + 9/2 -, 7/2 -, 5/2 - E1 T 1/2 > 1.2×10 15 y T 1/2 =8.152h 4 +, 3 + … 5 -, 4 -, 3 -, 2 - … (7/2 + ) T 1/2 =1.82y 179 Ta s wave neutron s wave neutron Nuclear Level Density  (9 - ) =  total -  gs

・ VUV-IR 自由電子レーザー ・レーザー逆コンプトン光 ・偏光アンジュレータ光 ・放射光 S-band small linear acc. S-band small linear acc. General-purpose Storage Ring TERAS Stroge Ring NIJI-IV Pulsed slow positron beam line ・レーザーコンプトン散乱 準単色 ps-fs Ⅹ線 ・コヒーレントテラヘルツ波 AIST Electron Accelerator Facility 400MeV Electron Linear Acc. TELL ・ナノメートル~原子レベル空孔計測 Small Storage Ring NIJI-II ・ SR プロセス

=532 nm 2.4 eV Tsukuba Electron Ring for Acceleration and Storage (TERAS)

Laser : INAZUMA expander mirror lens Laser system

Inverse Compton Scattering E  = 1 – 40 MeV  = E e /mc 2 “photon accelerator”

Neutron Detector System triple ring detectors Monitor: NaI(Tl) Triple-ring neutron detector 20 3 He counters (4 x 8 x 8 ) embedded in polyethylene

Experimental Set-up for direct neutron detection and photoactivation Target Sample ; 181 Ta 3 He Proportional Counter ×20 Neutron Moderator ; Polyethylene Target Sample ; 197 Au NaI(Tl) Scintillator

Utsunomiya et al., PRC(2003) 181 Ta( ,n) 180 Ta :  total Extra E1  -ray strength near Sn

Experimental results, and comparison with theoretical models Present work (2006) Systematic uncertainties 10 ~ 26% Goko et al. Phys. Rev. Lett. 96, (2006) IAEA : Lee et al. (1998) Statistical NLD model Combinatorial NLD model Hilaire & Goriely, NPA779 (2006)

Present results for the s-process production of 180 Ta m 30keV (s-process) 0.04 Previous Predictions 0.02 ~ 0.09 (K.Yokoi, K.Takahashi ;1983) 0.043±0.008 (Zs. Nèmeth, F.Käppeler, G.Reffo ;1992) Combinatorial NLD model  m /  tot : m:m: 44mb (Zs. Nèmeth, F.Käppeler, G.Reffo ;1992) Goko et al. Phys. Rev. Lett. 96, (2006) Statistical NLD model at 30 keV

M1 strength in Zr isotopes Crawley et al., PRC26, 87 (1982) SnSn (e,e’) weak & fragmented (p,p’): giant M1 resonance  ’): giant M1 resonance Anantaraman et al., PRL46 (1981) Bertrand et al., PL103B (1981) Meuer et al., NPA 1980 Nanda et al., PRL51 (1982) Laszewski et al., PRL59 (1987) SnSn SnSn SnSn GDR M1 E1 Excitation Energy Strong M1 strength of giant-resonance type was observed in (p,p’) below GRD. The M1 strength lies over the neutron separation energy for 92,94,96 Zr.

91 Zr(  n) 90 Zr 92 Zr(  n) 91 Zr 94 Zr(  n) 93 Zr ( ,n) cross sections on Zr isotopes Threshold behavior of ( ,n) cross sections is given by In the E1 photo-excitation, is allowed. However, the experimental cross sections are strongly enhanced from the expected behavior. The generalized Lorentzian parametrization of the E1  -ray strength function significantly underestimates the cross sections.

Main ingredients in the Talys code  E1  strength function Lorentzian models:Axel, PR126 (1962), Kopecky & Uhl, PRC41 (1990) HFB+QRPA model: Goriely, Khan, Samyn, NPA739 (2006) zNuclear Level density HFB+ Combinatorial model: Hilaire & Goriely, NPA779 (2006)  Spin-flip giant M1  strength function by Bohr & Mottelson Global systematics in RIPL Handbook Lorentzian function : E o =41A -1/3 MeV,  o = 4 MeV, f M1 = A 0.47 MeV -3 at 7 MeV Talys code: Koning, Hilaire, Duijvestijn, Proc. Int. Conf. on Nuclear Data for Science and Technology AIP Conf. Proc. 769, 1154 (2005).

91 Zr(n,  ) 92 Zr E [MeV] 92 Zr(  n) 91 Zr The Lorentzian parametrization of the E1  -ray strength function for 92 Zr can fit the ( ,n) data, but strongly overestimates (n,  ) cross sections. The Lorentzian parametrization of the E1  -ray strength function

91 Zr(n,  ) 92 Zr M1 strength in Zr isotopes in the photoneutron channel 91 Zr(  n) 90 Zr 92 Zr(  n) 91 Zr 94 Zr(  n) 93 Zr M1 E1 H. Utsunomiya et al., PRL100 (2008) If we employ the HFB+QRPA E1  -ray strength function supplemented with extra M1 strength assumed at 9 MeV with σ 0 =7.5mb and  =2.5 MeV in Lorentz shape, the cross sections are well reproduced. The M1 strength is about 75% larger than the strength predicted by the global systematics.

Major shell gaps associated with spin-flip M1 excitations zZ,N=28 1f 7/2 → 1f 5/2 z 50 1g 9/2 → 1g 7/2 z 82 1h 11/2 → 1h 9/2 z 126 1i 13/2 → 1i 11/2

1g 9/2 1g 7/2 2d 5/2 50 J  = 5/2 + for 91,93 Zr gs means that excess neutrons occupy the 2d 5/2 shell. Spin-flip M1 M1 strength can be similar for 91,92,94 Zr.

 o =7.5mb,  =2.5 MeV E o =9 MeV Lorentz shape 92 Zr 94 Zr 91 Zr

Medium-range plan 1: E1, M1  -ray strength functions zSystematic measurements of ( ,n) cross sections for as many stable nuclei as possible around the magic numbers 50, 82 and Zr isotopes (Zr-90,91,92,94,96) 2. Mo isotopes (Mo-92,94,95,96,97,98,100) 3. Sn isotopes (Sn-116,117, Sn-118,119,120,122,124) 4. Nd isotopes (Nd-142,143,144,145,146,148,150) 5. Pb isotopes (Pd-206,207,208) H. Utsunomiya et al., PRL100 (2008)

Partial cross section for Isomers and total cross sections Pt( ,n) 195 Pt m (13/2 +, keV, 4.02d) Re( ,n) 186 Re m ((8 + ), 149 keV, 2.0x10 5 y) 187 Re( ,n) 186 Re gs (1 -, 90.64h) Hf( ,n) 177 Hf m (37/2 -, keV, 51.4m) Lu( ,  ’) 176 Lu m (1 -, keV, 3.64h) Medium-range plan 2: Level densities S. Goko et al., PRL96 (2006)

Summary  The  SF and NLD are key nuclear statistical quantities in the Hauser-Feshbach model calculations of neutron capture and photoreaction rates in nuclear astrophysics.  Photonuclear reactions are an excellent electromagnetic probe of  SF and NLD of direct relevance to the p-, s-, and r-process nucleosynthesis of heavy elements.