PSEUDO-NEWTONIAN TOROIDAL STRUCTURES IN SCHWARZSCHILD-DE SITTER SPACETIMES Jiří Kovář Zdeněk Stuchlík & Petr Slaný Institute of Physics Silesian University.

Slides:



Advertisements
Similar presentations
Gravitational Wave Astronomy Dr. Giles Hammond Institute for Gravitational Research SUPA, University of Glasgow Universität Jena, August 2010.
Advertisements

Regularization of the the second-order gravitational perturbations produced by a compact object Eran Rosenthal University of Guelph - Canada Amos Ori Technion.
F. Debbasch (LERMA-ERGA Université Paris 6) and M. Bustamante, C. Chevalier, Y. Ollivier Statistical Physics and relativistic gravity ( )
Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit.
General Relativity Physics Honours 2006 A/Prof. Geraint F. Lewis Rm 557, A29 Lecture Notes 9.
Chapter 8 Gravity.
Planet Formation Topic: Orbital dynamics and the restricted 3-body problem Lecture by: C.P. Dullemond.
Summary N-body problem Globular Clusters Jackiw-Teitelboim Theory Poincare plots Chaotic Observables Symbolic Dynamics Some quick math Different Orbits.
Pavel Bakala Eva Šrámková, Gabriel Török and Zdeněk Stuchlík Institute of Physics, Faculty of Philosophy and Science, Silesian University in Opava, Bezručovo.
General Relativity Physics Honours 2007 A/Prof. Geraint F. Lewis Rm 557, A29 Lecture Notes 4.
Chapter 12 Gravitation. Theories of Gravity Newton’s Einstein’s.
Chapter 12.
Isaac and the Apple Tree Approximate Force of Gravity.
General Relativity Physics Honours 2010
Williams Research Gravity Pharis E. Williams 19 th Natural Philosophy Alliance Albuquerque, NM July, 2012.
Quadrupole moments of neutron stars and strange stars Martin Urbanec, John C. Miller, Zdenek Stuchlík Institute of Physics, Silesian University in Opava,
1 Dynamical Effects of Cosmological Constant Antigravity Μ. Αξενίδης, Λ. Περιβολαρόπουλος, Ε. Φλωράτος Ινστιτούτο Πυρηνικής Φυσικής Κέντρο Ερευνών ‘Δημόκριτος’
Vznik této prezentace byl podpořen projektem CZ.1.07/2.3.00/ Tato prezentace slouží jako vzdělávací materiál.
The physics of inflation and dark energy 1.3 Dark energy: some evidence (short list) Ages of glob. clusters/galaxies at z~2-3:  m 0.6 SN Ia:   -
Einstein Field Equations and First Law of Thermodynamics Rong-Gen Cai (蔡荣根) Institute of Theoretical Physics Chinese Academy of Sciences.
International Workshop on Astronomical X-Ray Optics Fingerprints of Superspinars in Astrophysical Phenomena Zdeněk Stuchlík and Jan Schee Institute of.
Gravitational Dynamics Formulae. Link phase space quantities r J(r,v) K(v)  (r) VtVt E(r,v) dθ/dt vrvr.
Pavel Bakala Martin Blaschke, Martin Urbanec, Gabriel Török and Eva Šrámková Institute of Physics, Faculty of Philosophy and Science, Silesian University.
Cosmic censorship in overcharging a charged black hole with a charged particle Yukawa Institute for Theoretical Physics (Kyoto University) Soichiro Isoyama.
KERR SUPERSPINARS AS AN ALTERNATIVE TO BLACK HOLES Zdeněk Stuchlík Institute of Physics, Faculty of Philosophy and Science, Silesian university in Opava.
Studying Dark Energy with Nearby Dwarf Galaxies Arthur D. Chernin Sternberg Astronomical Institute Moscow University In collaboration with I.D. Karachentsev,
MEASUREMENT OF BRANY BLACK HOLE PARAMETERS IN THE FRAMEWORK OF THE ORBITAL RESONANCE MODEL OF QPOs MEASUREMENT OF BRANY BLACK HOLE PARAMETERS IN THE FRAMEWORK.
1 Steklov Mathematical Institute RAS G. Alekseev G. Alekseev Cosmological solutions Dynamics of waves Fields of accelerated sources Stationary axisymmetric.
Chapter 8 Conservation of Energy Introduction: Our approach Conservative and non-conservative forces Potential Energy Mechanical Energy and its conservation.
General Relativity Physics Honours 2009
Pavel Bakala Martin, Urbanec, Eva Šrámková, Gabriel Török and Zdeněk Stuchlík Institute of Physics, Faculty of Philosophy and Science, Silesian University.
Pavel Bakala Eva Šrámková, Gabriel Török and Zdeněk Stuchlík Institute of Physics, Faculty of Philosophy and Science, Silesian University in Opava, Bezručovo.
18/04/2004New Windows on the Universe Jan Kuijpers Part 1: Gravitation & relativityPart 1: Gravitation & relativity J.A. Peacock, Cosmological Physics,
Equilibrium configurations of perfect fluid in Reissner-Nordström de Sitter spacetimes Hana Kučáková, Zdeněk Stuchlík, Petr Slaný Institute of Physics,
Equilibrium configurations of perfect fluid in Reissner-Nordström-anti-de Sitter spacetimes Hana Kučáková, Zdeněk Stuchlík, Petr Slaný Institute of Physics,
Equilibrium configurations of perfect fluid in Reissner-Nordström-(anti-)de Sitter spacetimes Hana Kučáková, Zdeněk Stuchlík & Petr Slaný MG12 Paris,
A Virtual Trip to the Black Hole Computer Simulation of Strong Gravitional Lensing in Schwarzschild-de Sitter Spacetimes Pavel Bakala Petr Čermák, Kamila.
Influence of dark energy on gravitational lensing Kabita Sarkar 1, Arunava Bhadra 2 1 Salesian College, Siliguri Campus, India High Energy Cosmic.
10/5/2004New Windows on the Universe Jan Kuijpers Part 1: Gravitation & relativityPart 1: Gravitation & relativity J.A. Peacock, Cosmological Physics,
Pavel Bakala Gabriel Török, Zdeněk Stuchlík, Eva Šrámková Institute of Physics Faculty of Philosophy and Science Silesian University in Opava Czech Republic.
Proportionality between the velocity V and radius r
Fluid dynamical equations (Navier-Stokes equations)
A Virtual Trip to the Black Hole Computer Simulation of Strong Gravitional Lensing in Schwarzschild-de Sitter Spacetimes Pavel Bakala Petr Čermák, Stanislav.
Pavel Bakala,Gabriel Török, Zdeněk Stuchlík and Eva Šrámková Institute of Physics, Faculty of Philosophy and Science, Silesian University in Opava, Bezručovo.
General Relativity Physics Honours 2008 A/Prof. Geraint F. Lewis Rm 560, A29 Lecture Notes 9.
Black Holes Astrophysics Lesson 14. Learning Objectives To know:-  How to define the event horizon for a black hole.  How to calculate the Schwarzschild.
Chapter 13 Gravitation.
INFLUENCE OF COSMOLOGICAL CONSTANT ON PARTICLE DYNAMICS NEAR COMPACT OBJECTS Zdeněk Stuchlík, Petr Slaný, Jiří Kovář and Stanislav Hledík Institute of.
Gravitational collapse of massless scalar field Bin Wang Shanghai Jiao Tong University.
Jiří Kovář, Petr Slaný, Vladimír Karas, Zdeněk Stuchlík Claudio Cremaschini and John Miller Claudio Cremaschini and John Miller Institute of Physics Silesian.
General Relativity and Cosmology The End of Absolute Space Cosmological Principle Black Holes CBMR and Big Bang.
A Virtual Trip to the Black Hole Computer Simulation of Strong Lensing near Compact Objects RAGTIME 2005 Pavel Bakala Petr Čermák, Kamila Truparová, Stanislav.
Q12.1 The mass of the Moon is 1/81 of the mass of the Earth.
Authored by : Dr. Harold Alden Williams Montgomery College at the Takoma Park/Silver Spring Campus, Planetarium Director and Physics and Geology Laboratory.
V. Fundamentals of Fluid Dynamics. Contents 1. State of Stress in Moving Fluid 2. Equations of Motion 3. Bernoulli Equation.
Jiří Kovář, Ondřej Kopáček, Vladimír Karas, Zdeněk Stuchlík Jiří Kovář, Ondřej Kopáček, Vladimír Karas, Zdeněk Stuchlík Institute of Physics Silesian University.
ON EXISTENCE OF HALO ORBITS IN COMPACT OBJECTS SPACETIMES Jiří Kovář Zdeněk Stuchlík & Vladimír Karas Institute of Physics Silesian University in Opava.
Genetic Selection of Neutron Star Structure Matching the X-Ray Observations Speaker: Petr Cermak The Institute of Computer Science Silesian University.
Hydrodynamics Continuity equation Notation: Lagrangian derivative
The effect of Gravity on Equation of State Hyeong-Chan Kim (KNUT) FRP Workshop on String Theory and Cosmology 2015, Chungju, Korea, Nov ,
Celestial Mechanics IV Central orbits Force from shape, shape from force General relativity correction.
A satellite orbits the earth with constant speed at height above the surface equal to the earth’s radius. The magnitude of the satellite’s acceleration.
Gravity on Matter Equation of State and the Unruh temperature Hyeong-Chan Kim (KNUT) 2016 FRP workshop on String theory and cosmology Seoul, Korea, June.
Zdeněk Stuchlík, Gabriel Török, Petr Slaný Multi-resonant models of quasi-periodic oscillations Institute of Physics, Faculty of Philosophy and Science,
Ewha Womans University, Seoul, Korea
Einstein’s Zurich Notebook
Dark Energy in the Local Universe
How to interpret the LIGO signal on the back of an envelope
A Classical Analog of a Kerr Black Hole
Law of Conservation of Energy
Presentation transcript:

PSEUDO-NEWTONIAN TOROIDAL STRUCTURES IN SCHWARZSCHILD-DE SITTER SPACETIMES Jiří Kovář Zdeněk Stuchlík & Petr Slaný Institute of Physics Silesian University in Opava Czech Republic Hradec nad Moravicí, September, 2007 This work was supported by the Czech grant MSM

Introduction Discription of gravity Newtonian > Newtonian gravitational potential (force) General relativistic > curvature of spacetime (geodesic equation) Pseudo-Newtonian > pseudo - Newtonian gravitational potential (force) Schwarzschild-de Sitter spacetime Geodesic motion [Stu-Kov, Inter. Jour. of Mod. Phys. D, in print] Toroidal perfect fluid structures [Stu-Kov-Sla, in preparation for CQG]

Introduction Newtonian central GF Poisson equationGravitational potential r-equation of motionEffective potential

Einstein’s equations Line element r-equation of motion Effective potential Introduction Relativistic central GF

Gravitational potential Paczynski-Wiita r-equation of motion Effective potential Introduction Pseudo-Newtonian central GF

Schwarzschild-de Sitter geometry Line element

Schwarzschild-de Sitter geometry Equatorial plane

Schwarzschild-de Sitter geometry Embedding diagrams Schwarzschild Schwarzschild-de Sitter

Schwarzschild-de Sitter geometry Geodesic motion horizons marginally bound (mb) marginally stable (ms)

Pseudo-Newtonian approach Potential definition Potential and intensity Intensity and gravitational force

Pseudo-Newtonian approach Gravitational potential NewtonianRelativistic Pseudo-Newtonian y=0, P-W potential

Pseudo-Newtonian approach Geodesic motion RelativisticPseudo-Newtonian

Pseudo-Newtonian approach Geodesic motion exact determination of - horizons - static radius - marginally stable circular orbits - marginally bound circular orbits small differences when determining - effective potential (energy) barriers - positions of circular orbits

Relativistic approach Toroidal structures Perfect fluidEuler equation Potential Integration (Boyer’s condition)

Pseudo-Newtonian approach Toroidal structures Euler equation Potential Integration

Shape of structure Comparison

Mass of structure Comparison Pseudo-Newtonian mass Relativistic mass Polytrop – non-relativistic limit

Adiabatic index y=10 -6 y= y=  =5/3 9.5x x x x x x  =3/2 1.8x x x x x  =7/5 2.8x x x x x x10 -7 Central density of structure Comparison

exact determination of - cusps of tori - equipressure surfaces small differences when determining - potential (energy) barriers - mass and central densities of structures Pseudo-Newtonian approach Toroidal structures

GRPN Fundamental Easy and intuitive Precise Approximative for some problems Approximative for other problems Conclusion

NewtonianRelativistic Footnote Pseudo-Newtonian definition

Relativistic potential Newtonian potential Shape of structure Newtonian potential

Thank you Acknowledgement To all the authors of the papers which our study was based on To you