The Fundamentals Of Modeling A Gaussian Coil-Gun Orbital Launcher

Slides:



Advertisements
Similar presentations
Magnetic Force Acting on a Current-Carrying Conductor
Advertisements

Magnetic Fields Due To Currents
The Beginning of Modern Astronomy
Sources of the Magnetic Field
Magnetism and Currents. A current generates a magnetic field. A magnetic field exerts a force on a current. Two contiguous conductors, carrying currents,
Chapter 22 Magnetism AP Physics B Lecture Notes.
Chapter 20 Magnetism.
Magnetism Review and tid-bits. Properties of magnets A magnet has polarity - it has a north and a south pole; you cannot isolate the north or the south.
Electromagnetic Induction Inductors. Problem A metal rod of length L and mass m is free to slide, without friction, on two parallel metal tracks. The.
Chapter 30 Sources of the magnetic field
Chapter 27 Sources of the magnetic field
Chapter 32 Magnetic Fields.
Wednesday, Oct. 26, 2005PHYS , Fall 2005 Dr. Jaehoon Yu 1 PHYS 1444 – Section 003 Lecture #16 Wednesday, Oct. 26, 2005 Dr. Jaehoon Yu Charged Particle.
Chapter 22 Magnetism.
Phy 213: General Physics III Chapter 29: Magnetic Fields to Currents Lecture Notes.
Physics 1502: Lecture 17 Today’s Agenda Announcements: –Midterm 1 distributed today Homework 05 due FridayHomework 05 due Friday Magnetism.
Copyright © 2009 Pearson Education, Inc. Lecture 9 – Electromagnetic Induction.
Current carrying wires 1820 Hans Christian Oersted Hans Christian Ørsted.
Physics 1502: Lecture 18 Today’s Agenda Announcements: –Midterm 1 distributed available Homework 05 due FridayHomework 05 due Friday Magnetism.
Magnetism July 2, Magnets and Magnetic Fields  Magnets cause space to be modified in their vicinity, forming a “ magnetic field ”.  The magnetic.
Copyright © 2009 Pearson Education, Inc. Lecture 8 - Magnetism.
Electromagnet. Wire Field  A moving charge generates a magnetic field. Symmetry with experiencing force Perpendicular to direction of motion Circles.
Sources of Magnetic Field
Announcements WebAssign HW Set 5 due October 10
Gravitational Potential energy Mr. Burns
Physics 121 Practice Problem Solutions 11 Faraday’s Law of Induction
Magnetic and Electromagnetic Fields
Electromagnetic Induction
Elec467 Power Machines & Transformers
Magnetic Field and Magnetic Forces
Magnetism & Electromagnetism.  Magnets form a magnetic field around them, caused by magnetic “poles.” These are similar to electric “poles” or “charge.”
Chapter 20 The Production and Properties of Magnetic Fields.
Lecture Outline Chapter 19 College Physics, 7 th Edition Wilson / Buffa / Lou © 2010 Pearson Education, Inc.
SACE Stage 2 Physics Motion in 2 Dimensions.
Magnetism 1. 2 Magnetic fields can be caused in three different ways 1. A moving electrical charge such as a wire with current flowing in it 2. By electrons.
Field Lines.
General electric flux definition
When a current-carrying loop is placed in a magnetic field, the loop tends to rotate such that its normal becomes aligned with the magnetic field.
Van Allen Radiation Belts The Van Allen radiation belts consist of charged particles surrounding the Earth in doughnut-shaped regions. The particles are.
Fundamentals of Electromagnetics and Electromechanics
ELECTROMAGNETIC THEORY EKT 241/4: ELECTROMAGNETIC THEORY PREPARED BY: NORDIANA MOHAMAD SAAID CHAPTER 4 – MAGNETOSTATICS.
ELECTRODYNAMICS. Electrodynamics: The Study of Electromagnetic Interactions Magnetism is caused by charge in motion. –Charges at rest have just an electric.
Magnetic Field Chapter 28 opener. A long coil of wire with many closely spaced loops is called a solenoid. When a long solenoid carries an electric current,
Physics 2102 Magnetic fields produced by currents Physics 2102 Gabriela González.
Thursday, Nov. 3, 2011PHYS , Fall 2011 Dr. Jaehoon Yu 1 PHYS 1444 – Section 003 Lecture #18 Thursday, Nov. 3, 2011 Dr. Jaehoon Yu Torque on a Current.
Announcements WebAssign HW Set 5 due October 10 Problems cover material from Chapters 18 HW set 6 due on October 17 (Chapter 19) Prof. Kumar tea and cookies.
Magnetic Forces and Magnetic Fields
Ch Magnetic Forces and Fields
22.7 Source of magnetic field due to current
In chapter 1, we talked about parametric equations. Parametric equations can be used to describe motion that is not a function. If f and g have derivatives.
Copyright © 2009 Pearson Education, Inc. Chapter 27 Magnetism.
Motion in Two Dimensions
Applied Physics Lecture 14 Electricity and Magnetism Magnetism
Chapter 6 Forces and Motion.
Quiz 1 Borderline Trouble Deep Trouble.
Magnetism. Magnets and Magnetic Fields Magnets have two ends – poles – called north and south. Like poles repel; unlike poles attract.
Chapter 20 Magnetism Magnetism 20 Phy 2054 Lecture Notes.
1 15. Magnetic field Historical observations indicated that certain materials attract small pieces of iron. In 1820 H. Oersted discovered that a compass.
PHY 102: Lecture Magnetic Field 6.2 Magnetic Force on Moving Charges 6.3 Magnetic Force on Currents 6.4 Magnetic Field Produced by Current.
Chapter 11 - Gravity. Example 3 The International Space Station Travels in a roughly circular orbit around the earth. If it’s altitude is 385 km above.
Problem 4 A metal wire of mass m can slide without friction on two parallel, horizontal, conducting rails. The rails are connected by a generator which.
Chapter 21 Magnetic Forces and Magnetic Fields Magnetic Fields The needle of a compass is permanent magnet that has a north magnetic pole (N) at.
Magnetic Field Sources
ELECTRICAL MACHINES Electrical Machines.
Fundamentals of Applied Electromagnetics
Magnetism Biot-Savart’s Law x R r q P I dx x • z R r dB q.
Magnetic Forces and Fields
Electromagnetism Continued
General Physics (PHY 2140) Lecture 14 Electricity and Magnetism
Magnetism.
Presentation transcript:

The Fundamentals Of Modeling A Gaussian Coil-Gun Orbital Launcher

What is a Gaussian Coil-gun? A Gaussian Coil-gun is a Solenoid that uses the properties of an electromagnetic field to propel a projectile A Solenoid is a coil of wire usually in cylindrical form that when carrying a current acts like a magnet In our Case the Solenoid will have an air filled Core

Representations of Solenoids

How Does This help us Launch a Projectile? The Current loops induce magnetic flux through the center of the air filled solenoid Using the Right-Hand Rule, We can determine the direction of the Magnetic Field

When a Current is applied through the loops of a solenoid a magnetic field develops When the Source of the Current is shut off the Magnetic Field dissipates.

Creating Projectile Motion The Projectile is a Ferro-magnetic material which becomes magnetized due to the induced current A Ferro-magnetic materials are charecterized to substances with an abnormally high magnetic permeability, a definite saturation point, and appreciable residual magnetism and hysteresis (such as iron-cobalt-nickel and alloys containing these metals)

Creating Projectile Motion Contd… Due to the current producing the magnetization on the Ferromagnetic projectile, It does not matter which way the current is flowing as it will attract the slug to the center of the solenoid This is because of the magnetization is induced from the current! This causes the projectile to accelerate to the center solenoid, if the projectile passes the midpoint of the solenoid before the current is shut off, then negative acceleration will occur. This is called suck-back.

Simplifying Assumptions We are creating the simplest possible model in this case! This means, ignoring things like eddy currents, field resonance, time delays, centripetal force, resistance, earth’s movement/rotation, wind speeds, air resistance (for now), acts of nature, and any other force not described above We the Solenoid to be infinitely long, single stage, and single layered. We are also assuming constant Force

The Difficulty of A Finite Solenoid The Difficulty of a Finite solenoid lies in the calculation of the field at the entrance to the solenoid, here it is not uniform. We would use this formula to Map the field of a finite solenoid. When ready, we can include this into our model, making it more accurate.

An Explanation of the Formulas of a Finite Solenoid B is the Magnetic Field µ0 is the Permeability of free space I is the Current dl’ is the element of length R is radius dB is the Field attributable to the segment dl’ r is the vector from the source point to point P As we integrate dl’ around the loop, dB sweeps out a cone. The horizontal components cancel and the vertical components combine. dl’ and r are perpendicular in this case. The factor of cosӨ projects out the vertical component. cosӨ and r2 are constants, and is simply the circumference 2πR which gives Remember: this is for one point of many along the center of the Solenoid

Formulas Vexit = (m is mass in kg) We can find a first estimate for the exit velocity of the slug by comparing the projectile energy state inside and outside of the coil F = µ0 ∇(M · H) · M = Xm H= Xm N I H= N I · Einside= -µ0 M H = - µ0 Xm n2 I2 Eoutside= 0 Joules H is the Applied Field · M is the projectile magnetization · F is Force µ0 is the permeability of free space = 4πX10-7 N Is the number of turns per unit length I is the current · Xm is magnetic Susceptibility E is the potential energy · is an axial unit vector We assume all potential energy is transferred to Kinetic Energy Vexit = (Vexit is the exit Velocity) (V is Volume of Projectile m^3) Vexit = (m is mass in kg)

Constants We Have obtained from Real World scenarios Mass of Projectile is 100,000 kg (1X105) (Taken From Space Shuttle Orbiter) Diameter of Coil 20 M (Also taken from space Shuttle Orbiter) Length Of Coil is 500 M (Taken from tallest buildings built) Length Of Projectile is 40 M (which is Also taken from the space shuttle orbiter) The number of turns will be 5000 (note: each coil being a .1m thick The length and the thickness will cause a large amount of Resistivity in the real world.) This means force will only be exerted on the Projectile for 250 meters

Calculations M=1X105kg n= =10 V= π r2 h = 400πm3 Xm=100 I =10000 amperes We have Vexit = Plugging in = = 177.72 m/s

Successful Launch? We Can now use one of several methods to determine whether the projectile will hit Low Earth Orbit (LEO) at 160km or geo-synchronous orbit which is at a height of 35000km or come back down and crash After the projectile has left the solenoid we have a constant acceleration = -9.81m/s This is Due to gravity.

Finding the Maximum Height We Can use equation 2.16 from the previous slide of the Kinematics equations to solve however in terms of Z (We are using Z in place of X as a vertical component). We’ll say the structure to the coil gun is underground and start at Zi=0. This gives us Zf(t)= 177.72t – To hit LEO we need to reach a height of ZF=160000m (1.6X105m) To find the maximum at Zf(t). We take the derivative in respects to t and set the equation equal to 0 From this we calculate tmax=18.12sec

Position of Projectile as a Function of Time From solving the Kinematic Equation at t=18.12s Zf=1600.67m Which means We have crash landed!

Summary and Conclusion There are multiple ways to improve the design of the coil-gun As mathematicians, we can add more turns, layer them, or increase the current. The next thing we can theoretically do is add multiple stages which would also improve the results of the Coil-gun

This Basic Model We started with a simplified model to first, gain understanding of the physics involved in the problem Main simplifications are: Did not Include suck-back force Did not Include the change in the permeability of free space as the projectile traveled through the Solenoid Did not map the field at the entrance to the Solenoid and assumed constant force at this point Modeled only one stage This model had one stage which made it impractical, however with multiple stages it becomes surprisingly efficient.