B. Golob, University of Ljubljana 4 Seas Conference 2004, Istanbul Overview of (selected) Belle and BaBar results B. Golob, Belle Collaboration University.

Slides:



Advertisements
Similar presentations
B. Golob, Ljubljana Univ.Results from B factories 1HQP School, Dubna, Aug 2008 Boštjan Golob University of Ljubljana, Jožef Stefan Institute & Belle Collaboration.
Advertisements

Particle Physics II Chris Parkes Heavy Flavour Physics Weak decays – flavour changing Mass states & flavour states GIM mechanism & discovery of charm CKM.
Physics with antiprotons: CP violation in D-mesons Klaus Peters Ruhr-Universität Bochum KVI Groningen Jan 7, 2003.
Measurement of  David Hutchcroft, University of Liverpool BEACH’06      
1 CKM unitarity problem: results from NA48 experiment Evgueni Goudzovski (JINR) JINR Scientific Council January 20, 2005.
New Resonances at Belle B. Golob University of Ljubljana, Slovenia Belle Collaboration B. Golob, Belle Cracow Epiphany Conference, 2005 Experimental environment.
Measurements of the angle  : ,  (BaBar & Belle results) Georges Vasseur WIN`05, Delphi June 8, 2005.
CP violation studies at B A B AR Philip Clark University of Colorado.
Vertex Function of Gluon-Photon Penguin Swee-Ping Chia High Impact Research, University of Malaya Kuala Lumpur, Malaysia
Flavor mixing in the BB system Motivation of studying B B system Measuring the B B flavor oscillation BaBar experiment Production of B B B B tagging Particle.
CERN, October 2008PDG Collaboration Meeting1 The CKM Quark-Mixing Matrix Revised February 2008 A. Ceccucci (CERN), Z. Ligeti (LBNL) and Y. Sakai (KEK)
B physics at Belle (and beyond) Aurelio Bay LPHE/IPEP o CP violation and B physics, introduction o KEK-B and the BELLE detector o Results from Belle: constraining.
ITEP Meeting on the future of heavy flavour physics 1 Experimental methods for precise determination of CKM matrix sides Marie-Hélène Schune Member of.
Title Gabriella Sciolla Massachusetts Institute of Technology Representing the BaBar Collaboration Beauty Assisi, June 20-24, 2005 Searching for.
Advanced topics in Particle Physics: LHC physics, 2011 Jeroen van Tilburg 1/55 Overview of flavour physics.
Baryonic decays of B mesons. H.Kichimi, June28-July3, Baryonic decays of B mesons H. Kichimi Representing the Belle collaboration BEACH June28-July3,
CP VIOLATION in b → s l + l - Transition. Direct CP-Violation CP non-conservation shows up as a rate difference between two processes that are the CP.
CP Asymmetry in B 0 ->π + π – at Belle Kay Kinoshita University of Cincinnati Belle Collaboration B 0 ->π + π – and CP asymmetry in CKMB 0 ->π + π – and.
Moriond EW, 3 Mar 2008Tagir Aushev (EPFL, ITEP)1  B → K S  0  0  B → K S K S  B → K S  0  B → D *+ D *-  B → a 1 , a 1 K, b 1 , b 1 K...  
1. Outline 2 Dr. Prafulla Kumar Behera, IIT Madras 9 th June 2015.
Belle results relevant to LHC Pheno-07 May 8, 2007 Madison Wisc. S.L. Olsen U of Hawai’i.
Symmetry and Symmetry Violation in Particle Physics 违反对称 Lecture 4 March 28, 2008.
The BaBarians are coming Neil Geddes Standard Model CP violation BaBar Sin2  The future.
P Spring 2003 L14Richard Kass B mesons and CP violation CP violation has recently ( ) been observed in the decay of mesons containing a b-quark.
CP Violation and CKM Angles Status and Prospects Klaus Honscheid Ohio State University C2CR 2007.
Philip J. Clark University of Edinburgh Rare B decays The Royal Society of Edinburgh 4th February 2004.
The Belle Experiment at KEK Christoph Schwanda Institute of High Energy Physics (HEPHY) Austrian Academy of Sciences Symposium Wissenschaftliche Kooperation.
Time-dependent CP Violation (tCPV) at Belle -- New results at ICHEP Masashi Hazumi (KEK) October. 10, 2006.
Rare B Decays at Belle Hsuan-Cheng Huang ( 黃宣誠 ) National Taiwan University 2 nd BCP NTU, Taipei June 7 - 9, 2002.
Christoph Schwanda1 The Belle B Factory Past, present and future Christoph Schwanda, Innsbruck, Oct-18, 2006.
BaBar physics, recent highlights and future prospects Owen Long, BaBar physics analysis coordinator U. C. Riverside & SLAC December 5, 2008.
1 Multi-body B-decays studies in BaBar Ben Lau (Princeton University) On behalf of the B A B AR collaboration The XLIrst Rencontres de Moriond QCD and.
Pavel Pakhlov MEPhI, Moscow Flavor physics at Super B factories era International conference on particle physics and astrophysics, Milan Hotel 4*, Moscow,
Niels Tuning (1) CP violation Lecture 2 N. Tuning.
Partial widths of the Z The total width  of a resonance such as the Z is a measure of how fast it decays. It is related to the mean lifetime  of the.
WIN-03, Lake Geneva, WisconsinSanjay K Swain Hadronic rare B decays Hadronic rare B-decays Sanjay K Swain Belle collaboration B - -> D cp K (*)- B - ->
1 Highlights from Belle Jolanta Brodzicka (NO1, Department of Leptonic Interactions) SAB 2009.
Andrzej Bożek nz11Highlights of the Belle Experiment SAB Review Selection of the most important Belle results since last SAB review (2005):  B 0.
1 Branching Fraction and Properties of B meson Decays to Charmonium Y. Watanabe Tokyo Institute of Technology For the Belle Collaboration.
High precision and new CP violation measurements with LHCb Michael Koratzinos, CERN EPS HEP 99 Tampere,15 July 1999.
Universality of weak interactions?
Charm Physics Potential at BESIII Kanglin He Jan. 2004, Beijing
B physics at Belle Koji Hara (Nagoya University) Workshop "New Developments of Flavor Physics" 2009 March 9-10, 2009 New results of tauonic B decays B.
B. Golob, D Mixing & CPV 1/25Frontier of Particle Physics 2010, Hu Yu Village, Aug 2010 Boštjan Golob University of Ljubljana/Jožef Stefan Institute &
A. Drutskoy, University of Cincinnati B physics at  (5S) July 24 – 26, 2006, Moscow, Russia. on the Future of Heavy Flavor Physics ITEP Meeting B physics.
CP Asymmetries: New Results from Belle Kay Kinoshita University of Cincinnati Belle Collaboration KEK, August 13, 2003 Weak interaction: CP, CKM matrixWeak.
1 Trees, penguins and boxes at LHCb Prospects for CP violation measurements at LHCb Tristan du Pree (Nikhef) On behalf of the LHCb collaboration 14 th.
Maria Różańska, INP Kraków HEP2003 Europhysics Conference –Aachen, July 18th 1 CPV in B → D (*) K (*) (and B → D K  ) in BaBar and Belle Outline: CPV.
BNM Tsukuba (KEK) Sep Antonio Limosani KEK Slide 1 Antonio Limosani JSPS Fellow (KEK-IPNS JAPAN) BMN
CP Violation in B decays 1 Y.Sakai KEK Jan. 9, 2005  experimental review  KEKB/BellePEP-II/BaBar.
The CKM Angles a and b a/f2 g/f3 b/f1 Introduction Measuring b/f1
Study of Belle Silicon Vertex Detector Intrinsic Resolution Saša Fratina, Jožef Stefan Institute, Ljubljana, Slovenia for Belle SVD group.
Update on Measurement of the angles and sides of the Unitarity Triangle at BaBar Martin Simard Université de Montréal For the B A B AR Collaboration 12/20/2008.
1 G. Sciolla – M.I.T. Beauty in the Standard Model and Beyond Palm tree and CKM Beauty in the Standard Model and Beyond Gabriella Sciolla (MIT) CIPANP.
Nita Sinha The Institute of Mathematical Sciences Chennai.
15/12/2008from LHC to the UniverseP. Chang 1 CP Violation and Rare R Decays CP Violation and Rare R Decays Paoti Chang Paoti Chang National Taiwan University.
Introduction to the Heavy Flavor session XLIst Rencontres de Moriond March QCD and Hadronic interactions at high energy Andrey Golutvin ITEP/CERN.
CP VIOLATION (B-factories) P. Pakhlov (ITEP). 2 The major experiments to explore CP Kaon system: Indirect CP Violation Direct CP Violation Not useful.
P Spring 2002 L16Richard Kass B mesons and CP violation CP violation has recently ( ) been observed in the decay of mesons containing a b-quark.
CP Violation Recent results and perspectives João R. T. de Mello Neto Instituto de Física Universidade Federal do Rio de Janeiro July,2003.
Physics 222 UCSD/225b UCSB Lecture 7 Mixing & CP violation (3 of 3) Today, we focus on how to measure things, and what the present knowledge is from the.
Weak interactions I. Radulescu Sub-atomic physics seminar October 2005 _____________________________________________ Nuclear Geophysics Division Kernfysisch.
B. Golob, B-Factories Book 1/13DPHEP, KEK, Jul 2010 Boštjan Golob University of Ljubljana/Jožef Stefan Institute & Belle/Belle II Collaboration B-factories.
ICHEP 2004, Beijing 1 Recent Results on B decays Y.Sakai (Belle/KEK) - Rare B Decay Highlights + Belle b  sqq Time-dependent CPV - -
Measurements of   Denis Derkach Laboratoire de l’Accélérateur Linéaire – ORSAY CNRS/IN2P3 FPCP-2010 Turin, 25 th May, 2010.
1 Belle & BaBar “Competition” Y.Sakai, KEK ASEPS 24-March-2010.
Tagir Aushev For the Belle Collaboration (EPFL, Lausanne ITEP, Moscow)
Searching for SUSY in B Decays
D0 Mixing and CP Violation from Belle
How charm data may help for φ3 measurement at B-factories
Presentation transcript:

B. Golob, University of Ljubljana 4 Seas Conference 2004, Istanbul Overview of (selected) Belle and BaBar results B. Golob, Belle Collaboration University of Ljubljana Jožef Stefan Institute, Ljubljana Introduction Experimental environment overview CKM Matrix Phase -  1 (  ) -  2 (  ) - direct CPV Magnitudes - |V ub | Hadron spectroscopy New charm states much more… Conclusions

V ud V us V ub V cd V cs V cb V td V ts V tb   (0,0) (0,1) Introduction B. Golob, University of Ljubljana 4 Seas Conference 2004, Istanbul BaBar & Belle (Ba/lle) main task: CP violation in system of B mesons specifically: various measurements of complex elements of Cabbibo-Kobayashi-Maskawa matrix CKM matrix is unitary deviations could signal processes not included in SM (NP)          W±W± qiqi qjqj V ij 1- 2 /2 A 3 (  - i  ) A / A 2 A 3 (1-  -i  ) = V ud V ub * V cd V cb * V td V tb * V cd V cb *

B. Golob, University of Ljubljana 4 Seas Conference 2004, Istanbul Experimental environment Asymmetric B factories ~1 km in diameter Mt. Tsukuba KEKB Belle Υ(4s) e+e+ e-e- BaBar p(e - )=9 GeV p(e + )=3.1 GeV  =0.56 Belle p(e - )=8 GeV p(e + )=3.5 GeV  =0.42 B B  z ~ c  B ~ 200  m L peak = =13.9x10 33 s -1 cm fb M BB L peak = =9.2x10 33 s -1 cm fb M BB √s=10.58 GeV Υ(4s)

B. Golob, University of Ljubljana 4 Seas Conference 2004, Istanbul Experimental environment-detectors Belle SVD: ~55  m (SVD1) ~40  m (SVD2) combined particle ID  (K ± )~85%  (p ± → K ± p<3.5 GeV/c  / K L detection 14/15 lyr. RPC+Fe Central Drift Chamber small cell +He/C 2 H 5 CsI(Tl) 16X 0 Aerogel Cherenkov cnt. n=1.015~1.030 Si vtx. det. 3 lyr. DSSD TOF conter SC solenoid 1.5T 8 GeV e GeV e + z-imp.param. resolution BaBar:DIRC Cherenkov angle p

B. Golob, University of Ljubljana 4 Seas Conference 2004, Istanbul CKM Matrix – phases Measurement method B CP B tag J/  KsKs ++ -- -- ++ K-K- l-l- Fully reconstruct decay to CP eigenstate Tag flavor of other B from charges of typical decay products  t=  z/  c Determine time between decays CPV manifests as an asymmetry in time dependent decay rates SM: for b → ccs : S=sin2  1, A=0 Υ(4s)   11 determined B 0 (B 0 ) B 0 or B 0

B. Golob, University of Ljubljana 4 Seas Conference 2004, Istanbul CKM Matrix – sin2  1 N sig =4150 to isolate B → f CP decays from bckg. B→J/  K s 274M BB T. Higuchi ICHEP’04 227M BB M.Bruinsma ICHEP’04 B→J/  K L J/ψ K L signal J/ψ X background Non-J/ψ background B A B AR N sig =2788 determine  t distribution

CKM Matrix – sin2  1 B. Golob, University of Ljubljana 4 Seas Conference 2004, Istanbul  t [ps] -8 8 Difference between B 0 and B 0 tagged decays Miss-tagging probability w reduces asymmetry by 1-2w Expected  t distribution convolved with detector resolution function S=sin2  1 = ± T. Higuchi,ICHEP’04 Belle S=sin2  1 = ± ± M.Bruinsma,ICHEP’04 BaBar (A=0 fixed) (A=0.023 ± 0.031) a CP B tag =B 0   11

CKM Matrix – sin2  2 B. Golob, University of Ljubljana 4 Seas Conference 2004, Istanbul B 0 →         S = √(1-A 2 )sin2  2 eff A ~ sin  P function of  2  1  P |P/T| Constraint: SU(2) symmetry M +0 = 1/√2 M +- + M 00 M -0 = 1/√2 M +- + M 00 b d W+W+ u d d u B0B0 T ~ V ub *V ud ~ 3 ++ -- S=sin2  2 A=0 b d d u u d b d W+W+ u u d d P ~ V tb *V td ~ 3 t B0B0 ++ -- B0B0 00 00 W+W+ T c ~ V ub *V ud   22

CKM Matrix – sin2  2 B. Golob, University of Ljubljana 4 Seas Conference 2004, Istanbul 152M BB PRL93,021801(2004) good tag B 0 →     S +- = ± 0.21 ± 0.07 A +- = 0.58 ± 0.21 ± 0.07 S +- = ± 0.17 ± 0.03 A +- = 0.09 ± 0.15 ± M BB Babar,M.Cristinziani,ICHEP’04 -A +- S +- M.A.Giorgi, ICHEP’04 B 0 →     a CP  t [ps] N sig =232 N sig =467

CKM Matrix – sin2  2 B. Golob, University of Ljubljana 4 Seas Conference 2004, Istanbul B 0 →     M bc [GeV] Br(B 0 →  0  0 ) = (1.17 ± 0.32 ± 0.10)x10 -6 A CP = 0.12 ± 0.56 ± M BB Babar,M.Cristinziani,ICHEP’04 274M BB Belle,Y.Sakai,ICHEP’04 Br(B 0 →  0  0 ) = (2.32 ± 0.45 ± 0.20)x10 -6 A CP = 0.43 ± 0.51 ± 0.17 Similar analysis as for B →  also for  B →  (  2 eff closer to  2 ) S +- Br(B 0 →  0  0 ) A +- Br(B 0 →  +  - ) A CP Br(B + →  +  0 ) Ba/lle BaBar Similar from B →  Ba/lle Similar from B →   2 = 106 o ± 8 o 11 o M.A.Giorgi,ICHEP’04 N sig =61 N sig =82

CKM Matrix – direct CPV B. Golob, University of Ljubljana 4 Seas Conference 2004, Istanbul ≠0 direct CPV; |M(B→f)| ≠|M(B→f)| only when multiple proc. contribute to f (tree+penguin) Belle B→  +  - first evidence A +- = 0.58 ± 0.21 ± 0.07 not confirmed by BaBar Direct CPV also in time integrated decay rates: M bc B 0 →K -  + B 0 →K +  - A CP = ±0.030±0.009 A CP = ±0.025±0.005 BaBar,227M BB,M.A.Giorgi,ICHEP’04 Belle,274M BB,Y.Sakai,ICHEP’04 N sig =2139 N sig =1606

CKM Matrix – consistency B. Golob, University of Ljubljana 4 Seas Conference 2004, Istanbul   Many independent measurements Unitary  |V ub /V cb | B X c,u l W From tree-level (s.l.) B decays b c,u |V cb | known to ~1.4%, becoming as precise as |V us |= (~1%) need to pin-down |V ub |, present WA acc. ~10% b→cl backg. order of magnitude larger

CKM Matrix – |V ub | B. Golob, University of Ljubljana 4 Seas Conference 2004, Istanbul l   ElEl q2q2 MXMX B Variables separating b → ul from b → cl  lepton energy E l ; hadronic inv. mass M x ; leptonic inv. mass q 2 ; B1B1 B2B2  (4s) D   K   l XuXu fully reconstructed (M bc ) To reduce theoretical uncertainty in Br(b→ul ) ↔ |V ub | use combination M x - q 2 Full reconstruction Belle: B→D (*)-  + /  + /a 1 + /D s (*)+  ~0.25% BaBar: B→D (*)- n 1  n 2 K …  ~0.4% Babar,88M BB high p lepton M bc [GeV]   |V ub |

CKM Matrix – |V ub | B. Golob, University of Ljubljana 4 Seas Conference 2004, Istanbul Extract signal in high q 2 low M x region: Babar-CONF-04/11,ICHEP’04 M x <1.7 GeV Belle,152M BB T.Iijima,ICHEP’04 q 2 >8 GeV 2 signal b→cl |V ub |= ( 4.98 ± 0.40 ± 0.39 ± 0.47)x10 -3 |V ub |= ( 5.54 ± 0.42 ± 0.50 ± 0.55)x10 -3 Babar Belle (stat.) (syst.) (th.) N sig ~115 N sig =174

CKM Matrix – back to sin2  1 B. Golob, University of Ljubljana 4 Seas Conference 2004, Istanbul   11 Not only from b → ccs (B→ J/  K s ) b d W+W+ s s s d P ~ V tb *V ts ~ A 2 t B0B0  KSKS also from b → sss (B→  K s ) other proc. negligible S=sin2  1 B→KsB→Ks sin2  1 = 0.06 ± 0.33 ± 0.09 a CP 2.2  away from ccs N sig =139 sin2  1 = 0.50 ± 0.25 ± 0.06 Belle, 274M BB, Y.Sakai,ICHEP’04 BaBar,227M BB, A.Hoecker,ICHEP’04 M bc tt (0.73±0.04)

CKM Matrix – back to sin2  1 B. Golob, University of Ljubljana 4 Seas Conference 2004, Istanbul other examples of b → sss (e.g. B →  ’ K s ) 0.41± ± ±0.04 conservative upper bound: |S  Ks -S  ’KS |<0.2 Grossman et al. “sin2  1 ” S  ’KS or S  KS at present value would be sign of NP  K s  ’K s J/  K s

Conclusions B. Golob, University of Ljubljana 4 Seas Conference 2004, Istanbul Aleph+Delphi BaBar+Belle CPV in K system new charm states direct CPV in B system Ba/lle mature exp., testing SM with high precision 1964: CPV in K system, 2001: CPV in B system 2004: sin2  1 (  ) is a precision measurement (±6%) 1999: direct CPV in K system, 2004: direct CPV in B system; CKM predictions confirmed  2 (  ) measured many measurements stat. limited, in 2 years ~2x more data J/  (c quark) CPV in B system direct CPV in K system

  Conclusions B. Golob, University of Ljubljana 4 Seas Conference 2004, Istanbul   Before (B-factories)…: …and today…

Hadron spectroscopy – X(3872) B. Golob, University of Ljubljana 4 Seas Conference 2004, Istanbul Belle observed a new state decaying into J/      X(3872) ’’ B + →K + X(3872) J/      l+l-l+l- M(J/      )- M(J/  ) [GeV] confirmed by CDF,D0,BaBar Belle:  (X →  c1 )/  (X→ J/      )<0.89  (X →  c2 )/  (X→ J/      )<1.1 X(3872) not observed in any other decay mode Mass, width, Br’s & helicity un-compatible with expected cc states X(3872) M D* +M D 2M D cc J/   c0  c1  c2 hchc ’’  c ’’ hc’hc’  c1 ’  c2     Isospin 0++ allowed Isospin 1-- violating Decay to J/   +  - < 1 MeV/c 2

Hadron spectroscopy – X(3872) B. Golob, University of Ljubljana 4 Seas Conference 2004, Istanbul Search for B + →K + X(3872) J/        N=10.0±3.6 S/N=5  mass region M(  )+M(J/  )=3879 MeV X(3872) →  J/  could occur  via virtual  Belle,274M BB F.Fang,ICHEP’04 in accordance with DD* molecule model  (  J  )/  ( J/      )=0.8±0.3±0.1 Swanson,PLB 588,189(2004)

Hadron spectroscopy – D sJ mesons B. Golob, University of Ljubljana 4 Seas Conference 2004, Istanbul BaBar and Cleo discovered two narrow resonances D sJ (2317) + → D s +  0 D sJ (2460) + → D s + , D s * +  0 BaBar, 125fb -1,V.Halyo,ICHEP’04 M(D sJ ) [GeV] J=1 J=2 J=1 J=0 D sJ (2317) + → D s +  0 D sJ (2460) + → D s +  Properties studied e.g. helicity in B→DD sJ Belle,280M BB, M.Danilov,ICHEP’04 Apart from low masses properties in accordance with lowest level P states J P =0 +,1 +

Hadron spectroscopy – D sJ mesons B. Golob, University of Ljubljana 4 Seas Conference 2004, Istanbul First observation of B 0 →D sJ (2317) + K - M(D s  0 )-M(D s ) [GeV] Events in M bc,  E signal region B 0 →D sJ (2317) + K - B 0 →D sJ (2317) -  + Measured branching fractions Br(B 0 -> D s K - )= (2.93±0.55 ± 0.79)x10 -5 Br(B 0 -> D s  + )= (1.94 ± 0.47 ± 0.52)x10 -5 Br(B 0 →D sJ (2317) + K - )=(5.3±1.4±0.5±1.4)x10 -5 Belle,152M BB,A.Drutskoy,ICHEP’04

Conclusions B. Golob, University of Ljubljana 4 Seas Conference 2004, Istanbul Aleph+Delphi BaBar+Belle CPV in K system new charm states direct CPV in B system Ba/lle mature exp., testing SM with high precision 1964: CPV in K system, 2001: CPV in B system 2004: sin2  1 (  ) is a precision measurement (±6%) 1999: direct CPV in K system, 2004: direct CPV in B system; CKM predictions confirmed  2 (  ) measured many measurements stat. limited, in 2 years ~2x more data J/  (c quark) CPV in B system direct CPV in K system

Continuum suppression backup slide   continuum Y (4S) e + e - → qq “continuum” (~3x BB) e+e+ e-e- e+e+ e-e- qq Signal B Other B Continuum Jet-like BB spherical To suppress: use event shape variables

CKM Matrix – sin2  1 backup slide b q1q1 q2q2 q3q3 V q3b V* q2q1 W b q2q2 q2q2 q1q1 V qb V* qq1 q W g Tree QCD penguin sin2  1 (  ) CP asymmetry: CP in decay: |A/A| ≠ 1 CP in mixing: |q/p| ≠ 1 CP in interference between mixing and decay: | | = 1, Im( ) ≠ 1 | | ≠ 1 SM: |q/p|-1~ 4  (m c 2 /m t 2 )sin  1 ~5x10 -4 in B system | | ≠ 1 signals direct CPV

CKM Matrix – sin2  1 backup slide b → ccs: tree + penguin contribution ~ V cb V cs *=A 2 penguin only contribution ~ V ub V us *=A 4 (  -i  ) (q/p) B A/A (q/p) K level of hadronic uncertainty due to interference (direct CP)

CKM Matrix – sin2  1 backup slide CP sampleN TAG purityη CP J/ψ K S (K S →π + π - )275196% J/ψ K S (K S →π 0 π 0 )65388% ψ(2S) K S (K S →π + π - )48587% χ c1 K S (K S →π + π - )19485% η c K S (K S →π + π - )28774% Total for η CP = % J/ψ K *0 (K *0 → K S π 0 )57277%+0.51 J/ψ K L %+1 Total773078% BaBar, decay modes used: sin2β =  (stat)  (sys) Fit result with | |=1 fixed when left free: |λ|=0.950 ± (stat.) ± Miss-tagging probability, resolution function: from self-tagged events B →D*l, D , … Fitting function: BaBar: S A

B. Golob, University of Ljubljana 4 Seas Conference 2004, Istanbul CKM Matrix – sin2  1 yield signal region J/ψ K L signal J/ψ X background Non-J/ψ background B A B AR 227M BB M.Bruinsma ICHEP’04 274M BB T. Higuchi ICHEP’04 B→J/  K s B→J/  K L N sig =4370 N sig =2788 N sig =4150 N sig =2722 to isolate B → f CP decays from bckg.

CKM Matrix – sin2  1 backup slide from b→sss penguin contribution ~ V cb V cs *=A 2 another penguin contribution ~ V ub V us *=A 4 (  -i  ) S~sin2  1, theor. clean “sin2  1 ”=  M BB, PRL91,261602(2003) S = 0.06 ± 0.33 ± M BB, ICHEP’  away from ccs

CKM Matrix – sin2  1 backup slide S = 0.50 ± 0.25 ± M BB, ICHEP’  away from ccs 2.4  away from ccs conservative upper bound: |S  Ks -S  ’KS | <0.2 Grossman et al.  ’K s average: 0.41±0.11  K s average: 0.34±0.21 S  ’KS or S  KS at present value would be sign of NP

CKM Matrix –  2 backup slide u,c,t M +- = -Te -i  2 + Pe i  P M +0 = 1/√2(T c e i  C + T)e -i  2 M 00 = 1/√2(T c e i  C e -i  2 + Pe i  P ) S = √(1-A 2 )sin2  2 eff A ~ sin  P b d W+W+ u d d u B0B0 T ~ V ub *V ud ~ 3 ++ -- S=sin2  2 A=0 b d d u u d b d W+W+ u u d d P ~ V tb *V td ~ 3 B0B0 ++ -- B0B0 00 00 W+W+ T c ~ V ub *V ud Ispospin relations for B→   2 from B→  BaBar

CKM Matrix –  2 backup slide B→  from BaBar     could be mixed CP state, but observed to be almost pure CP=+1 122M BB, Moriond QCD’04 S long =-0.19±0.33±0.11 A long = 0.23±0.24± M BB, PRL91(2003), Br(B + →     )=(22.5±5.6±5.8)x M BB,M.A.Giorgi,ICHEP’04 Br(B 0 →     ) < 1.1x10 CL  2 from B→  BaBar B→(   from Ba/lle     not CP eigenstate, 4 amplitudes considered:

CKM Matrix –  2 backup slide Decay time distribution: indirect CPV parameter (  2 ) direct CPV parameter  (B 0 →     )+  (B 0 →     )  (B 0 →     )+  (B 0 →     ) strong phase diff. between amplitudes asymmetry between direct CPV asymmteries Belle: selected bands BaBar: assume 3  dominated by  +,-,0 and fit Dalitz plot

CKM Matrix –  2 backup slide M.A.Giorgi,ICHEP’04

CKM Matrix – direct CPV backup slide B→K ±  0 A CP = 0.04 ± 0.05 ± M BB,Y.Sakai,ICHEP’04 c.f. in B→K +  - A CP = ±0.025±  diff. _d_d  KK u u BB b d A CP = 0.06 ± 0.06 ± 0.01 BaBar,M.Chrintinziani,ICHEP’04 B - →K -  0 B + →K +  0 Large EW penguin?

CKM Matrix – direct CPV backup slide u,c,t b d W-W- u u s d K-K- ++ B0B0 P ~ V tb *V ts ~ A 2 b d W-W- u s d u B0B0 T ~ V ub *V us ~ A 4 K-K- ++ Contributions to B 0 →K -  +

CKM Matrix –  3 backup slide b u W-W- u s d c B-B- T ~ V cb *V us ~ A 3 K-K- D0D0 b u u u c s B-B- K-K- W-W- T c ~ V ub *V cs ~ A 3 (  +i  ) ~ e i  3 D0D0 Basic idea: use B - →K - D 0 and B - →K - D 0 with D 0,D 0 →f interference ↔  3 Gronau,London,Wyler, 1991: B - → K - D 0 CP Atwood,Dunietz,Soni, 2001: B - → K - D 0( * ) [K +  - ] Belle;Giri,Zupan et al., 2003: B - → K - D 0( * ) [K s  +  - ] Dalitz plot or any other common 3-body decay; Dalitz density depends on  3 Sensitivity depends on

CKM Matrix –  3 backup slide Belle: Use continuum D 0 from D *–  D 0 π –, D 0  K s π + π – decay to model Dalitz plot density.  E M bc B ±  D 0 K ± D 0  K s π + π – B ±  D 0  ± miss-id B +  D 0 K + M 2 (K s  + ) M 2 (K s  - ) B -  D 0 K - M 2 (K s  + ) M 2 (K s  - ) Belle,152M BB A.Bozek,ICHEP’04 Visible asymmetry Fit with  3, ,r B free 26 o <  3 < % C.L. r B = 0.26 ± ± 0.03 ± 0.04

CKM Matrix –  3 backup slide BaBar,211M BB G.Cavoto,ICHEP’04 33 rBrB 68% 90% 33 rBrB 97% 74% 20% Belle,152M BB A.Bozek,ICHEP’04

CKM Matrix – |V ub | backup slide large non-perturbative corr. (large th. uncertainty) q2q2 Mx2Mx2 used in measurement (q 2 cut,M Xcut ) 8 GeV 2, 1.7 GeV  V ub 6%-9% only q 2 cut 11.6 GeV 2  V ub 12%-15% C.W.Bauer et al.,hep-ph/ |V ub |= ( 4.92 ± 0.39 ± 0.36 ± 0.46)x10 -3 |V ub |= ( 4.77 ± 0.28 ± 0.28 ± )x10 -3 M X only M x -q 2 Babar-CONF-04/11,ICHEP’04

CKM Matrix – |V ub | backup slide |V ub |= ( 4.92 ± 0.39 ± 0.36 ± 0.46)x10 -3 M x -q 2 |V ub |= ( 5.54 ± 0.42 ± 0.50 ± 0.55)x10 -3 (stat.) (syst.) (th.) BaBar syst.: largest from detector (tracking, ID) and b→cl modeling Belle syst.: MC statistics BaBar Belle

X(3872) backup slide 35±7 events M=3872.0±0.8 MeV  <2.3MeV (90%) M(J/   +  -) BaBar

X(3872) backup slide  c ” h c ’  c1 ’  2  c2  3 M too low and  too small angular dist’n rules out 1   J/  way too small  c   too small; (PRL 93, 2003)  c should dominate  J/   c  & DD) too small - Isospin violating decays to J/   +  - C(J/  )=-1,C(  )=-1 → C(X)=+1 Since  is not C eigenstate, decay X → J/  is probably X → J/  (as indicated by m(  )) I(  )=1, I(  )=0, I(J/  )=0 → X decays break isospin symmetry ccuu=1/√2 cc [1/√2 (uu+dd)+1/√2 (uu-dd)]=1/√2(|I=0>+|I=1>)

D sJ backup slide Belle, 87fb-1,PRL92,012002(2004) M(D s  0 )-M(D s ) M(D s *  0 )-M(D s *) helicity angle: Feynman diagrams for B 0 →D sJ + K -