Inferring Biologically Meaningful Relationships Introduction to Systems Biology Course Chris Plaisier Institute for Systems Biology.

Slides:



Advertisements
Similar presentations
Differential Expression Analysis Introduction to Systems Biology Course Chris Plaisier Institute for Systems Biology.
Advertisements

High-dimensional data analysis: Microarrays and multiple testing Mark van de Wiel 1,2 1. Dep. of Mathematics, VU University Amsterdam 2. Dep. of Biostatistics.
1 MicroArray -- Data Analysis Cecilia Hansen & Dirk Repsilber Bioinformatics - 10p, October 2001.
Yanxin Shi 1, Fan Guo 1, Wei Wu 2, Eric P. Xing 1 GIMscan: A New Statistical Method for Analyzing Whole-Genome Array CGH Data RECOMB 2007 Presentation.
Microarray technology and analysis of gene expression data Hillevi Lindroos.
Section 4.2 Fitting Curves and Surfaces by Least Squares.
Detecting Differentially Expressed Genes Pengyu Hong 09/13/2005.
Regression Analysis. Unscheduled Maintenance Issue: l 36 flight squadrons l Each experiences unscheduled maintenance actions (UMAs) l UMAs costs $1000.
Differentially expressed genes
Figure 1: (A) A microarray may contain thousands of ‘spots’. Each spot contains many copies of the same DNA sequence that uniquely represents a gene from.
‘Gene Shaving’ as a method for identifying distinct sets of genes with similar expression patterns Tim Randolph & Garth Tan Presentation for Stat 593E.
Statistics for Managers Using Microsoft Excel, 5e © 2008 Prentice-Hall, Inc.Chap 13-1 Statistics for Managers Using Microsoft® Excel 5th Edition Chapter.
Lecture 24: Thurs. Dec. 4 Extra sum of squares F-tests (10.3) R-squared statistic (10.4.1) Residual plots (11.2) Influential observations (11.3,
Inferring the nature of the gene network connectivity Dynamic modeling of gene expression data Neal S. Holter, Amos Maritan, Marek Cieplak, Nina V. Fedoroff,
Multiple Regression 2 Sociology 5811 Lecture 23 Copyright © 2005 by Evan Schofer Do not copy or distribute without permission.
Correlation and Regression Analysis
Chapter 7 Forecasting with Simple Regression
Introduction to Glioblastoma Chris Plaisier Introduction to Systems Biology Course Institute for Systems Biology.
Analysis of microarray data
Special Topics in Genomics Lecture 1: Introduction Instructor: Hongkai Ji Department of Biostatistics
Practical statistics for Neuroscience miniprojects Steven Kiddle Slides & data :
LEARNING PROGRAMME Hypothesis testing Intermediate Training in Quantitative Analysis Bangkok November 2007.
MicroRNA Targets Prediction and Analysis. Small RNAs play important roles The Nobel Prize in Physiology or Medicine for 2006 Andrew Z. Fire and Craig.
September In Chapter 14: 14.1 Data 14.2 Scatterplots 14.3 Correlation 14.4 Regression.
Radiogenomics in glioblastoma multiforme
DNA microarray technology allows an individual to rapidly and quantitatively measure the expression levels of thousands of genes in a biological sample.
Sample size vs. Error A tutorial By Bill Thomas, Colby-Sawyer College.
Panu Somervuo, March 19, cDNA microarrays.
Experimental validation. Integration of transcriptome and genome sequencing uncovers functional variation in human populations Tuuli Lappalainen et al.
Bioinformatics Brad Windle Ph# Web Site:
An Introduction to R graphics Cody Chiuzan Division of Biostatistics and Epidemiology Computing for Research I, 2012.
BIOL 582 Lecture Set 11 Bivariate Data Correlation Regression.
Unraveling condition specific gene transcriptional regulatory networks in Saccharomyces cerevisiae Speaker: Chunhui Cai.
Microarrays and Gene Expression Analysis. 2 Gene Expression Data Microarray experiments Applications Data analysis Gene Expression Databases.
Introduction to Microarrays Dr. Özlem İLK & İbrahim ERKAN 2011, Ankara.
Copyright © Cengage Learning. All rights reserved. 13 Linear Correlation and Regression Analysis.
Gene expression. The information encoded in a gene is converted into a protein  The genetic information is made available to the cell Phases of gene.
Introduction to Statistical Analysis of Gene Expression Data Feng Hong Beespace meeting April 20, 2005.
MRNA Expression Experiment Measurement Unit Array Probe Gene Sequence n n n Clinical Sample Anatomy Ontology n 1 Patient 1 n Disease n n ProjectPlatform.
Statistical Testing with Genes Saurabh Sinha CS 466.
1 ArrayTrack Demonstration National Center for Toxicological Research U.S. Food and Drug Administration 3900 NCTR Road, Jefferson, AR
ICNCT-16, June 2014, Helsinki Glioma heterogeneity and the L-Amino acid transporter-1 (LAT1): A first step to stratified BPA-based BNCT? D. Ngoga 1 ; C.
DNA Microarray Data Analysis using Artificial Neural Network Models. by Venkatanand Venkatachalapathy (‘Venkat’) ECE/ CS/ ME 539 Course Project.
Gene expression & Clustering. Determining gene function Sequence comparison tells us if a gene is similar to another gene, e.g., in a new species –Dynamic.
Regression Analysis: Part 2 Inference Dummies / Interactions Multicollinearity / Heteroscedasticity Residual Analysis / Outliers.
Comp. Genomics Recitation 10 4/7/09 Differential expression detection.
GENE EXPRESSION. Pretty Please Back doorBig Brother.
Marshall University School of Medicine Department of Biochemistry and Microbiology BMS 617 Lecture 6 –Multiple hypothesis testing Marshall University Genomics.
Distinguishing active from non active genes: Main principle: DNA hybridization -DNA hybridizes due to base pairing using H-bonds -A/T and C/G and A/U possible.
NCode TM miRNA Analysis Platform Identifies Differentially Expressed Novel miRNAs in Adenocarcinoma Using Clinical Human Samples Provided By BioServe.
Stitching the Tutorials Together Introduction to Systems Biology Course Chris Plaisier Institute for Systems Biology.
CCLE Cancer Cell Line Encyclopedia Alexey Erohskin.
MIS2502: Data Analytics Introduction to Advanced Analytics and R.
Simultaneous identification of causal genes and dys-regulated pathways in complex diseases Yoo-Ah Kim, Stefan Wuchty and Teresa M Przytycka Paper to be.
Institute of Statistics and Decision Sciences In Defense of a Dissertation Submitted for the Degree of Doctor of Philosophy 26 July 2005 Regression Model.
Estimating the False Discovery Rate in Genome-wide Studies BMI/CS 576 Colin Dewey Fall 2008.
Chapter 13 Simple Linear Regression
EQTLs.
최지혜.
A graph-based integration of multiple layers of cancer genomics data (Progress Report) Do Kyoon Kim 1.
Lecture Slides Elementary Statistics Twelfth Edition
Lecture 11 By Shumaila Azam
Chapter 8 Part 2 Linear Regression
Building and Analyzing Genome-Wide Gene Disruption Networks
CHAPTER 29: Multiple Regression*
Diego Calderon, Anand Bhaskar, David A
Volume 2, Issue 1, Pages (January 2009)
MIS2502: Data Analytics Introduction to Advanced Analytics and R
Cancer Cell Line Encyclopedia
Benjamini & Hochberg-corrected p < 0.05 Bonferroni-corrected
Presentation transcript:

Inferring Biologically Meaningful Relationships Introduction to Systems Biology Course Chris Plaisier Institute for Systems Biology

Glioma: A Deadly Brain Cancer Wikimedia commons

miRNAs are Dysregulated in Cancer Chan et al., 2011

miRNAs are Dysregulated in Cancer Chan et al., 2011

What happens if you amplify a miRNA? If the DNA encoding an miRNA is amplified what happens? Does it affect the expression of the miRNA? – We expect it might up-regulate it with respect to the normal controls Can we detect this?

What kind of data do we need?

Biologically Motivated Integration TCGA Integrate

Genome-Wide Profiling: Comparative Genomic Hybridization Label probes for all tumor DNA = equal binding of labeled normal and tumor probes = more binding of labeled tumor probes— gain of tumor DNA = more binding of labeled normal probes— loss of tumor DNA Metaphase chromosome Hybridize to normal metaphase chromosomes for 48—72 hours Label probes for all normal DNA

Stratification of Patients Mischel et al, 2004

hsa-miR-26a Predicted by CNV

What are the next steps? What are the most likely target genes of hsa- miR-26a in glioma? – Provides direct translation to wet-lab experiments Can we infer the directionality of the associations we have identified? Copy Number Variation miRNA Expression miRNA Target Gene Expression

Where We Left Off We want to load up the data from earlier during the differential expression analysis: ## Load up image from earlier differential expresssion analysis # Open url connection con = url( ' ga.systemsbiology.net.events.sysbio/files/uploads/differen tialExpressionAnalysis.RData‘) # Load up the RData image load(con) # Close connection after loading close(con)

Loading the Data Comma separated values file is a text file where each line is a row and the columns separated by a comma. In R you can easily load these types of files using: # Load up data for differential expression analysis d1 = read.csv( ' systemsbiology.net.events.sysbio/files/uploads/cnvData_miRNAE xp.csv', header=T, row.names=1) NOTE: CSV files can easily be imported or exported from Microsoft Excel.

Which genes should we test?

Correlation of miRNA Expression with miRNA Target Genes Bartel, Cell 2009

PITA Target Prediction Database Takes into consideration miRNA complementarity Cross-species conservation of site Free energy of annealing Free energy of local mRNA secondary structure Kertesz, Nature Genetics 2007

Target Prediction Databases Plaisier, Genome Research 2012

Comparison to Compendium Plaisier, Genome Research 2012

Load Up Predictions for hsa-miR-26a Extracted only the has-miR-26a predcited target genes from database file to a smaller file to make loading faster. # First load up the hsa-miR-26a PITA predicted target genes mir26a = read.csv(' sbio/sites/baliga.systemsbiology.net.events.sysbio/f iles/uploads/hsa_miR_26a_PITA.csv', header = T)

Subset Expression Matrix Need to select out only those genes who are predicted to be regulated by hsa-miR-26a: # Create data matrix for analysis # sub removes ‘exp.’ from gene names g2 = as.matrix(g1[sub('exp.', '', rownames(g1)) %in% mir26a[,2],]) # sapply is used to iterate through and coerce all colmuns into numeric format g3 = as.matrix(sapply(1:ncol(g2), function(i) { as.numeric(g2[,i]) })) # Add row (genes) and column (patient) names to the expression matrix dimnames(g3) = dimnames(g2) # Add the hsa-miR-26a expression as a row to the expression matrix g3 = rbind(g3, 'exp.hsa-miR-26a' = as.numeric(d1['exp.hsa-miR-26a',]))

Calculate Correlation Between Genes and miRNA Expression # Calculate correlations between PITA predicted genes and hsa-miR-26a c1.r = 1:(nrow(g3)-1) c1.p = 1:(nrow(g3)-1) for(i in 1:(nrow(g3)-1)) { c1 = cor.test(g3[i,], g3['exp.hsa-miR-26a',]) c1.r[i] = c1$estimate c1.p[i] = c1$p.value } # Plot correlation coefficients hist(c1.r, breaks = 15, main = 'Distribution of Correaltion Coefficients', xlab = 'Correlation Coefficient')

Distribution of Correlation Coefficients

Correcting for Multiple Testing # Do testing correction p.bonferroni = p.adjust(c1.p, method = 'bonferroni') p.benjaminiHochberg = p.adjust(c1.p, method = 'BH') # How many miRNA are considered significant via p-value only print(paste('P-Value Only: Uncorrected = ', sum(c1.p<=0.05), '; Bonferroni = ', sum(p.bonferroni<=0.05), '; Benjamini-Hochberg = ', sum(p.benjaminiHochberg<=0.05), sep = '')) # How many miRNAs are considered significant via both p- value and a negative correlation coefficient print(paste('P-value and Rho: Uncorrected = ', sum(c1.p<=0.05 & c1.r<=-0.15), '; Bonferroni = ', sum(p.bonferroni<=0.05 & c1.r<=-0.15), '; Benjamini- Hochberg = ', sum(p.benjaminiHochberg<=0.05 & c1.r<=-0.15 ), sep = ''))

Significantly Correlated miRNAs # The significantly negatively correlated genes sub('exp.', '', rownames(g3)[which(p.benjaminiHochberg<=0.05 & c1.r<=- 0.15)]) # Create index ordered by Benjamini-Hochberg corrected p-values to sort each vector o1 = order(c1.r) # Make a data.frame with the three columns hsa_mir_26a_c1 = data.frame(rho = c1.r[o1], c.p = c1.p[o1], c.p.bonferroni = p.bonferroni[o1], c.p.benjaminiHochberg = p.benjaminiHochberg[o1]) # Add miRNA names as rownames rownames(hsa_mir_26a_c1) = sub('exp.', '', rownames(g3)[-480][o1]) # Take a look at the top results head(hsa_mir_26a_c1)

Plot Top Correlated miRNA Target Gene Let’s do a spot check and make sure our inferences make sense. Visual inspection while crude can tell us a lot. # Scatter plot of top correlated gene plot(as.numeric(g3['exp.ALS2CR2',]) ~ as.numeric(g3['exp.hsa-miR-26a',]), col = rgb(0, 0, 1, 0.5), pch = 20, xlab = 'miRNA Expresion', ylab = 'Gene Expression', main = 'ALS2CR2 vs. hsa-miR-26a') # Make a trend line and plot it lm1 = lm(as.numeric(g3['exp.ALS2CR2',]) ~ as.numeric(g3['exp.hsa-miR-26a',])) abline(lm1, col = 'red', lty = 1, lwd = 1)

Top Correlated miRNA Target Gene

Scaling Up to Plot All Significantly Correlated Genes # Select out significantly correlated genes corGenes = rownames((g3[- 480,])[o1,])[which(p.benjaminiHochberg[o1]<=0.05 & c1.r[o1]<=-0.15)] ## Plot all significantly correlated genes # Open a PDF device to output plots pdf('genesNegativelyCorrelatedWith_hsa_miR_26a_gbm.pdf') # Iterate through all correlated genes for(cg1 in corGenes) { plot(as.numeric(g3[cg1,]) ~ as.numeric(g3['exp.hsa-miR-26a',]), col = rgb(0, 0, 1, 0.5), pch = 20, xlab = 'miRNA Expresion', ylab = 'Gene Expression', main = paste(sub('exp.', '', cg1),' vs. hsa-miR-26a:\n R = ', round(hsa_mir_26a_c1[sub('exp.','',cg1),1], 2), ', P-Value = ', signif(hsa_mir_26a_c1[sub('exp.', '', cg1),4],2), sep = '')) # Make a trend line and plot it lm1 = lm(as.numeric(g3[cg1,]) ~ as.numeric(g3['exp.hsa-miR-26a',])) abline(lm1, col = 'red', lty = 1, lwd = 1) } # Close PDF device dev.off()

Open PDF

Write Out CSV File of Results # Write out results file write.csv(hsa_mir_26a_c1, file = 'hsa_mir_26a_correlated_target_g enes_PITA.csv')

Correlation of CNV with miRNA Target Genes Correlation between CNV and miRNA is not perfect – CNV explains ~58% of miRNA expression Question: Does CNV also predict miRNA target gene expression? Can pretty much directly use previous code

Add hsa-miR-26a Copy Number to Matrix In order to conduct analysis we need to have copy number and gene expression in the same matrix. # Create data matrix for analysis g2 = as.matrix(g1[sub('exp.', '', rownames(g1)) %in% mir26a[,2],]) g3 = as.matrix(sapply(1:ncol(g2), function(i) { as.numeric(g2[,i]) })) dimnames(g3) = dimnames(g2) g3 = rbind(g3, 'cnv.hsa-miR-26a' = as.numeric(d1['cnv.hsa- miR-26a',]))

Calculate Correlations Between hsa-miR-26a CNV and Gene Expression # Calculate correlations between PITA predicted genes and hsa-miR-26a c1.r = 1:(nrow(g3)-1) c1.p = 1:(nrow(g3)-1) for(i in 1:(nrow(g3)-1)) { c1 = cor.test(g3[i,], g3['cnv.hsa-miR-26a',]) c1.r[i] = c1$estimate c1.p[i] = c1$p.value } # Plot correlation coefficients hist(c1.r, breaks = 15, main = 'Distribution of Correaltion Coefficients', xlab = 'Correlation Coefficient')

Distribution of Correlation Coefficients

Correcting for Multiple Testing # Do testing correction p.bonferroni = p.adjust(c1.p, method = 'bonferroni') p.benjaminiHochberg = p.adjust(c1.p, method = 'BH') # How many miRNA are considered significant via p-value only print(paste('P-Value Only: Uncorrected = ', sum(c1.p<=0.05), '; Bonferroni = ', sum(p.bonferroni<=0.05), '; Benjamini-Hochberg = ', sum(p.benjaminiHochberg<=0.05), sep = '')) # How many miRNAs are considered significant via both p- value and a negative correlation coefficient print(paste('P-value and Rho: Uncorrected = ', sum(c1.p<=0.05 & c1.r<=-0.15), '; Bonferroni = ', sum(p.bonferroni<=0.05 & c1.r<=-0.15), '; Benjamini- Hochberg = ', sum(p.benjaminiHochberg<=0.05 & c1.r<=-0.15 ), sep = ''))

Significantly Correlated miRNAs # The significantly negatively correlated genes sub('exp.', '', rownames(g3)[which(p.benjaminiHochberg<=0.05 & c1.r<=- 0.15)]) # Create index ordered by Benjamini-Hochberg corrected p-values to sort each vector o1 = order(c1.r) # Make a data.frame with the three columns hsa_mir_26a_c1 = data.frame(rho = c1.r[o1], c.p = c1.p[o1], c.p.bonferroni = p.bonferroni[o1], c.p.benjaminiHochberg = p.benjaminiHochberg[o1]) # Add miRNA names as rownames rownames(hsa_mir_26a_cnv1) = sub('exp.', '', rownames(g3)[-480][o1]) # Take a look at the top results head(hsa_mir_26a_cnv1)

Plot Top Correlated miRNA Target Gene Again, let’s do a spot check and make sure our inferences make sense. # Plot top correlated gene plot(as.numeric(g3['exp.ALS2CR2',]) ~ as.numeric(g3['cnv.hsa-miR-26a',]), col = rgb(0, 0, 1, 0.5), pch = 20, xlab = 'miRNA CNV', ylab = 'Gene Expression', main = 'ALS2CR2 vs. hsa-miR-26a CNV') # Make a trend line and plot it lm1 = lm(as.numeric(g3['exp.ALS2CR2',]) ~ as.numeric(g3['cnv.hsa-miR-26a',])) abline(lm1, col = 'red', lty = 1, lwd = 1)

Top Correlated miRNA Target Gene

Scaling Up to Plot All Significantly Correlated Genes # Select out significantly correlated genes corGenes = rownames((g3[-480,])[o1,])[which(p.benjaminiHochberg[o1] <= 0.05 & c1.r[o1] <= -0.15)] # Open a PDF device to output plots pdf('genesNegativelyCorrelatedWith_CNV_hsa_miR_26a_gbm.pdf') # Iterate through all correlated genes for(cg1 in corGenes) { plot(as.numeric(g3[cg1,]) ~ as.numeric(g3['cnv.hsa-miR-26a',]), col = rgb(0, 0, 1, 0.5), pch = 20, xlab = 'miRNA CNV', ylab = 'Gene Expression', main = paste(sub('exp.','',cg1), ' vs. hsa-miR-26a CNV:\n R = ', round(hsa_mir_26a_cnv1[sub('exp.','',cg1),1],2), ', P-Value = ', signif(hsa_mir_26a_cnv1[sub('exp.','',cg1),4],2),sep='')) # Make a trend line and plot it lm1 = lm(as.numeric(g3[cg1,]) ~ as.numeric(g3['cnv.hsa-miR-26a',])) abline(lm1, col = 'red', lty = 1, lwd = 1) } # Close PDF device dev.off()

Open PDF

Write Out Results # Write out results file write.csv(hsa_mir_26a_cnv1, file = 'CNV_hsa_mir_26a_correlated_target_ge nes_PITA.csv')

Correlation doesn’t = Causation

Causality Analysis Using a variety of approaches it is possible to determine the most likely flow of information through a genetically controlled system – e.g. We won’t do this analysis here, but we can demonstrate at least that the trait variance explained by hsa-miR-26a CNV and expression are redundant to the effect on ALS2CR2

Make a Data Matrix for Analysis ### Causality of association ### # Create data matrix for analysis g2 = as.matrix(g1[sub('exp.','',rownames(g1)) %in% mir26a[,2],]) g3 = as.matrix(sapply(1:ncol(g2), function(i) {as.numeric(g2[,i])})) dimnames(g3) = dimnames(g2) g3 = rbind(g3, 'exp.hsa-miR-26a' = as.numeric(d1['exp.hsa-miR-26a',]), 'cnv.hsa-miR- 26a' = as.numeric(d1['cnv.hsa-miR-26a',]))

Correlation Between CNV and miRNA ## Plot (1,1) - CNV vs. miRNA expression # Calculate correlation between miRNA expression and miRNA copy number c1 = cor.test(g3['cnv.hsa-miR-26a',], g3['exp.hsa-miR-26a',]) # Plot correlated miRNA expression vs. copy number variation plot(g3['exp.hsa-miR-26a',] ~ g3['cnv.hsa-miR-26a',], col = rgb(0, 0, 1, 0.5), pch = 20, xlab = 'Copy Number', ylab = 'miRNA Expression', main = paste('miRNA Expression vs. miRNA Copy Number:\n R = ',round(c1$estimate,2),', P-Value = ',signif(c1$p.value,2),sep='')) # Make a trend line and plot it lm1 = lm(g3['exp.hsa-miR-26a',] ~ g3['cnv.hsa-miR-26a',]) abline(lm1, col = 'red', lty = 1, lwd = 1)

CNV Associated with miRNA

Correlation Between CNV and miRNA Target Gene ## Plot (1,2) - CNV vs. ALS2CR2 Expression # Calculate correlation between miRNA target gene ALS2CR2 expression and miRNA copy number c1 = cor.test(g3['cnv.hsa-miR-26a',], g3['exp.ALS2CR2',]) # Plot correlated miRNA target gene ALS2CR2 expression vs. copy number variation plot(g3['exp.ALS2CR2',] ~ g3['cnv.hsa-miR-26a',], col = rgb(0, 0, 1, 0.5), pch = 20, xlab = 'Copy Number', ylab = 'Gene Expression', main = paste('ALS2CR2 Expression vs. miRNA Copy Number:\n R = ',round(c1$estimate,2),', P-Value = ',signif(c1$p.value,2),sep='')) # Make a trend line and plot it lm1 = lm(g3['exp.ALS2CR2',] ~ g3['cnv.hsa-miR-26a',]) abline(lm1, col = 'red', lty = 1, lwd = 1)

CNV Associated with miRNA Target Gene

Correlation Between miRNA and Target Gene ## Plot (2,1) - miRNA expression vs. CNV # Calculate correlation between miRNA target gene ALS2CR2 expression and miRNA expression c1 = cor.test(g3['exp.hsa-miR-26a',], g3['exp.ALS2CR2',]) # Plot correlated miRNA target gene ALS2CR2 expression vs. miRNA expression plot(g3['exp.ALS2CR2',] ~ g3['exp.hsa-miR-26a',], col = rgb(0, 0, 1, 0.5), pch = 20, xlab = 'miRNA Expression', ylab = ' Gene Expression', main = paste('ALS2CR2 Expression vs. miRNA Expression:\n R = ',round(c1$estimate,2),', P-Value = ',signif(c1$p.value,2),sep='')) # Make a trend line and plot it lm1 = lm(g3['exp.ALS2CR2',] ~ g3['exp.hsa-miR-26a',]) abline(lm1, col = 'red', lty = 1, lwd = 1)

miRNA Associated with Target Gene

Condition miRNA Target Gene Expression on miRNA Expression ## Plot (2,2) - miRNA expression vs. CNV # Get rid of NA's g4 = t(na.omit(t(g3))) # Calcualte regression model for miRNA target gene ALS2CR2 expression vs. miRNA expression r1 = lm(g4['exp.ALS2CR2',] ~ g4['exp.hsa-miR-26a',]) # Calculate correlation between residual variation after conditioning miRNA target gene ALS2CR2 expression # on miRNA expression against miRNA copy number c1 = cor.test(g4['cnv.hsa-miR-26a',], r1$residuals) # Plot correlated miRNA target gene expression vs. copy number variation plot(r1$residuals ~ g4['cnv.hsa-miR-26a',], col = rgb(0, 0, 1, 0.5), pch = 20, xlab = 'Copy Number', ylab = 'Residual', main = paste('Residual vs. miRNA Copy Number:\n R = ',round(c1$estimate,2),', P-Value = ',signif(c1$p.value,2),sep='')) # Make a trend line and plot it lm1 = lm(r1$residual ~ g4['exp.hsa-miR-26a',]) abline(lm1, col = 'red', lty = 1, lwd = 1)

CNV Residual Association with miRNA Target Gene

Biologically Meaningful Relationship

Summary Can’t directly infer directionality of putative target gene without specialized analysis However, given the underlying biology it is quite likely that the cause chain of events are: Copy Number Variation miRNA Expression miRNA Target Gene Expression