Nanostructures on ultra-clean two-dimensional electron gases T. Ihn, C. Rössler, S. Baer, K. Ensslin C. Reichl and W. Wegscheider.

Slides:



Advertisements
Similar presentations
Clemens Rössler Thomas Ihn Klaus Ensslin C. Reichl W. Wegscheider
Advertisements

Topological Insulators
Electrical transport and charge detection in nanoscale phosphorus-in-silicon islands Fay Hudson, Andrew Ferguson, Victor Chan, Changyi Yang, David Jamieson,
Searching for Majorana fermions in semiconducting nano-wires Pedram Roushan Peter O’Malley John Martinis Department of Physics, UC Santa Barbara Borzoyeh.
Graphene & Nanowires: Applications Kevin Babb & Petar Petrov Physics 141A Presentation March 5, 2013.
Magnetoresistance of tunnel junctions based on the ferromagnetic semiconductor GaMnAs UNITE MIXTE DE PHYSIQUE associée à l’UNIVERSITE PARIS SUD R. Mattana,
Spin-orbit effects in semiconductor quantum dots Departament de Física, Universitat de les Illes Balears Institut Mediterrani d’Estudis Avançats IMEDEA.
S. Y. Hsu ( 許世英 ) and K. M. Liu( 劉凱銘 ) May 29, 2007 NSC M and NSC M Department of Electrophysics, National Chiao Tung University.
Silvano De Franceschi Laboratorio Nazionale TASC INFM-CNR, Trieste, Italy Orbital Kondo effect in carbon nanotube quantum dots
Laterally confined Semiconductor Quantum dots Martin Ebner and Christoph Faigle.
Quantum charge fluctuation in a superconducting grain Manuel Houzet SPSMS, CEA Grenoble In collaboration with L. Glazman (University of Minnesota) D. Pesin.
Thermal Enhancement of Interference Effects in Quantum Point Contacts Adel Abbout, Gabriel Lemarié and Jean-Louis Pichard Phys. Rev. Lett. 106,
Rydberg physics with cold strontium James Millen Durham University – Atomic & Molecular Physics group.
Activation energies and dissipation in biased quantum Hall bilayer systems at. B. Roostaei [1], H. A. Fertig [2,3], K. J. Mullen [1], S. Simon [4] [1]
Magneto-optical study of InP/InGaAs/InP quantum well B. Karmakar, A.P. Shah, M.R. Gokhale and B.M. Arora Tata Institute of Fundamental Research Mumbai,
Optics on Graphene. Gate-Variable Optical Transitions in Graphene Feng Wang, Yuanbo Zhang, Chuanshan Tian, Caglar Girit, Alex Zettl, Michael Crommie,
Introduction to the Kondo Effect in Mesoscopic Systems.
Center for Quantum Information ROCHESTER HARVARD CORNELL STANFORD RUTGERS LUCENT TECHNOLOGIES Spin effects and decoherence in high-mobility Si MOSFETs.
Physics of Graphene A. M. Tsvelik. Graphene – a sheet of carbon atoms The spectrum is well described by the tight- binding Hamiltonian on a hexagonal.
Markus Büttiker University of Geneva Haifa, Jan. 12, 2007 Mesoscopic Capacitors.
The noise spectra of mesoscopic structures Eitan Rothstein With Amnon Aharony and Ora Entin University of Latvia, Riga, Latvia.
Quantum conductance I.A. Shelykh St. Petersburg State Polytechnical University, St. Petersburg, Russia International Center for Condensed Matter Physics,
20 10 School of Electrical Engineering &Telecommunications UNSW UNSW 10 Author: Jeremy Wong Heng MengSupervisor:Prof. Andrew Steven Dzurak.
Quantum Dots Arindam Ghosh. Organization of large number of nanostructures – scalability Utilize natural forces Organic, inorganic and biological systems.
Novel Architecture of Illuminable Variable Density Two-Dimensional Electron System S.Brandsen, J. Pollanen, J.P. Eisenstein Institute for Quantum Information.
Observation of neutral modes in the fractional quantum hall effect regime Aveek Bid Nature (2010) Department of Physics, Indian Institute of Science,
Computational Solid State Physics 計算物性学特論 5回
1 Engineering of Disorder in MBE grown Ultra- High Mobility 2D Electron System Vladimir Umansky Braun Center for Submicron Research Weizmann Institute.
The world of 2d electrons is exciting: enabling ‘ballistic high mobility transport’ modulation doping enabling ‘ballistic high mobility transport’ modulation.
Ravi Sharma Co-Promoter Dr. Michel Houssa Electrical Spin Injection into p-type Silicon using SiO 2 - Cobalt Tunnel Devices: The Role of Schottky Barrier.
Single spin detection Maksym Sladkov Top master nanoscience symposium June 23, 2005.
Fermi-Edge Singularitäten im resonanten Transport durch II-VI Quantenpunkte Universität Würzburg Am Hubland, D Michael Rüth, Anatoliy Slobodskyy,
Coherent excitation of Rydberg atoms on an atom chip
Supercurrent through carbon-nanotube-based quantum dots Tomáš Novotný Department of Condensed Matter Physics, MFF UK In collaboration with: K. Flensberg,
Electronic States and Transport in Quantum dot Ryosuke Yoshii YITP Hayakawa Laboratory.
Elastic collisions. Spin exchange. Magnetization is conserved. Inelastic collisions. Magnetization is free. Magnetic properties of a dipolar BEC loaded.
Quantum Confinement in Nanostructures Confined in: 1 Direction: Quantum well (thin film) Two-dimensional electrons 2 Directions: Quantum wire One-dimensional.
O AK R IDGE N ATIONAL L ABORATORY U. S. D EPARTMENT OF E NERGY Modeling Electron and Spin Transport Through Quantum Well States Xiaoguang Zhang Oak Ridge.
Wigner molecules in carbon-nanotube quantum dots Massimo Rontani and Andrea Secchi S3, Istituto di Nanoscienze – CNR, Modena, Italy.
Ady Stern (Weizmann) Papers: Stern & Halperin , PRL
Detection of current induced Spin polarization with a co-planar spin LED J. Wunderlich (1), B. Kästner (1,2), J. Sinova (3), T. Jungwirth (4,5) (1)Hitachi.
1 of xx Coulomb-Blockade Oscillations in Semiconductor Nanostructures (Part I & II) PHYS 503: Physics Seminar Fall 2008 Deepak Rajput Graduate Research.
Quantum Noise of a Carbon Nanotube Quantum Dot in the Kondo Regime Exp : J. Basset, A.Yu. Kasumov, H. Bouchiat and R. Deblock Laboratoire de Physique des.
Electrical control over single hole spins in nanowire quantum dots
Quantum Interference in Multiwall Carbon Nanotubes Christoph Strunk Universität Regensburg Coworkers and Acknowledgements: B. Stojetz, Ch. Hagen, Ch. Hendlmeier.
Singlet-Triplet and Doublet-Doublet Kondo Effect
Superconductivity with T c up to 4.5 K 3d 6 3d 5 Crystal field splitting Low-spin state:
Progress Report: Tools for Quantum Information Processing in Microelectronics ARO MURI (Rochester-Stanford-Harvard-Rutgers) Third Year Review, Harvard.
Charge pumping in mesoscopic systems coupled to a superconducting lead
THE KONDO EFFECT IN CARBON NANOTUBES
Kondo effect in a quantum dot without spin Hyun-Woo Lee (Postech) & Sejoong Kim (Postech  MIT) References: H.-W. Lee & S. Kim, cond-mat/ P. Silvestrov.
Single Electron Transistor (SET) CgCg dot VgVg e-e- e-e- gate source drain channel A single electron transistor is similar to a normal transistor (below),
Aiming at Quantum Information Processing on an Atom Chip Caspar Ockeloen.
Electronic transport in one-dimensional wires Akira Furusaki (RIKEN)
Basics of edge channels in IQHE doing physics with integer edge channels studies of transport in FQHE regime deviations from the ‘accepted’ picture Moty.
Thin Film Magnetism Group, Cavendish Laboratory, University of Cambridge W. S. Cho and J. A. C. Bland Cavendish Laboratory, University of Cambridge, UK.
Flat Band Nanostructures Vito Scarola
1 Vortex configuration of bosons in an optical lattice Boulder Summer School, July, 2004 Congjun Wu Kavli Institute for Theoretical Physics, UCSB Ref:
NTNU, April 2013 with collaborators: Salman A. Silotri (NCTU), Chung-Hou Chung (NCTU, NCTS) Sung Po Chao Helical edge states transport through a quantum.
Charge-Density-Wave nanowires Erwin Slot Mark Holst Herre van der Zant Sergei Zaitsev-Zotov Sergei Artemenko Robert Thorne Molecular Electronics and Devices.
Igor Lukyanchuk Amiens University
1 The 5/2 Edge IPAM meeting on Topological Quantum Computing February 26- March 2, 2007 MPA Fisher, with Paul Fendley and Chetan Nayak Motivation: FQHE:
Y. Miyahara, A. Roy-Gobeil
Spin-orbit interaction in a dual gated InAs/GaSb quantum well
Contact Resistance Modeling in HEMT Devices
Christian Scheller
Tunneling between helical edge states through extended contacts
Coulomb Blockade and Single Electron Transistor
Strong Coupling of a Spin Ensemble to a Superconducting Resonator
News from Princeton Flatlands!
Presentation transcript:

Nanostructures on ultra-clean two-dimensional electron gases T. Ihn, C. Rössler, S. Baer, K. Ensslin C. Reichl and W. Wegscheider

Electrons Clean Environment Magnetic Field Rich variety of ground states and excitations Composite Fermions J.K. Jain, PRL 63, 199 (1989) Willett et al, PRL 59, 1776 (1987) odd denominator fractions

Electrons Clean Environment Magnetic Field Rich variety of ground states and excitations Willett et al, PRL 59, 1776 (1987) W. Pan et al, PRL 83, 3530 (1999) even denominator fractions non-abelian anyonic excitations topological quantum computing S. Das Sarma PRL 94, (2005) T = 8 mK  = 17x10 6 cm 2 /Vs

What we need S. Das Sarma et al, PRL 94, (2005) High-mobility 2DEGs Ultralow temperatures Tunnel Barriers Quantum Point Contacts Quantum Dots Interferometers utilize =5/2 state for topological quantum computation

High Mobility 2DEGs z (nm) GaAs AlGaAs AlAs 4 doping layers, 2 screening layers  high mobility, but gating non-trivial K.J. Friedland et al., PRL 77, 4616 (1996) V. Umansky et al., J. Cryst. Growth 311, 1658 (2009) nSnS 2DEG Si AlGaAs Au screening layer (in AlAs → Γ-band) screening layer (in AlAs → Γ-band) ionized dopants C. Rössler et al., New J. Phys. 12, (2010) Mobility µ > 10 7 cm 2 /Vs Density n S = 3.5 x cm -2  λ F = 45 nm T = 1.9 K B = 0.1 T n S (10 11 cm -2 ) µ (10 6 cm 2 /Vs) depletion accumulation

Quantum Point Contacts V G1&G2 (V) G (2e 2 /h) QPC1: width w QPC ≈ nm  expect 2w QPC /λ F = 7-9 Subbands Geometry: Quantum Point Contact C. Rössler et al., New J. Phys. 13, (2011) V G1&G2 (V) G1 G2 200 nm G1 G2 500 nm G (2e 2 /h) QPC2: width w QPC ≈ nm  expect 2w QPC /λ F = Subbands Geometry: Quantum Wire QPC1 T = 1.3 K V SD = 0 mV QPC2 T = 1.3 K V SD = 0 mV

Scanning for Defects V G1 (V) V G2 (V) QPC1 T = 1.3 K × 2e 2 /h 2 3 Count number of plateaus  QPC shifted across 200 nm No apparent defects (i.e. resonances) within scan range 0.7 anomaly visible throughout scan range |dG/dV G1&G2 | (a.u.) 0 1 G1 G2 200 nm S. Schnez, C. Rössler et al., Phys. Rev. B 84, (2011)

Finite Bias Transport Spectrum V G1&G2 (V) V SD (mV) QPC1 T = 1.3 K 12 |dG/dV G1&G2 | (a.u.) Higher-order resonances visible Probe subband spacings  Extract shape parameters of confinement potential G1 G2 200 nm

Finite Bias Transport Spectrum V G1&G2 (V) QPC1 T = 1.3 K 12 |dG/dV G1&G2 | (a.u.) Higher-order resonances visible Probe subband spacings  Extract shape parameters of confinement potential G1 G2 200 nm V SD (mV)

Finite Bias Transport Spectrum V G1&G2 (V) QPC1 T = 1.3 K 12 |dG/dV G1&G2 | (a.u.) Higher-order resonances visible Probe subband spacings  Extract shape parameters of confinement potential G1 G2 200 nm V SD (mV)

Lifting the Spin Degeneracy ν QPC QPC3 B ┴ = 2 T V SD = 0 mV T = 0.1 K V G1&G2 (V) ν QPC ν BULK

Lifting the Spin Degeneracy V G1&G2 (V) V SD (mV) QPC3 T = 0.1 K B ┴ = 2 T 24 pinched off 6 12 |dG/dV G1&G2 | (a.u.) 0 1 Spin-gap enhanced by interactions: g eff = in GaAs |g * |~ 3.8 at ν QPC = 5 |g * |~ 4.4 at ν QPC = 3 ν QPC = 1 obscured by 0.7 anomaly 35 ν QPC QPC3 B ┴ = 2 T V SD = 0 mV T = 0.1 K V G1&G2 (V) ν QPC ν BULK

Fractional edge channels Weak B-field: spin splitting Intermediate B-field: integer and fractional edge-channels Strong B-field & low density: Interference and localisation  Filter for (fractional) edge channels V G1&G2 (V) QPC4 T = 0.1 K V SD = 0 mV ν QPC B ┴ = 3.3 T ν Bulk = B ┴ = 6.8 T ν Bulk = 2 B ┴ = 12.8 T ν Bulk = 1 1 4/3 5/3 2/3 1

Localized Edge Channels  Coulomb Blockade ν QPC = nm B (T) V PG (V) ΔB = 1.9 mT ΔV PG = 7.7 mV nA 1.67 nA ΔV G : adjust charge of localized edge channel ΔB: redistribute electrons between edge channels see also: Y. Zhang et al., Phys. Rev. B 79, (2009) N. Ofek et al., PNAS 107, 5276 (2010) B. I. Halperin et al., Phys. Rev. B 83, (2011) ν bulk = 2 ν QPC = 1 B (T) V PG (V) ΔB = 1.0 mT ΔV PG = 7.2 mV nA 3.05 nA ν QPC = 2 ν bulk = 4 ν QPC = nm

Coulomb-Coupled Edge Channels ν QPC ≈ 0, ν bulk = nm ΔB = 3.0 mT B (T) V PG (V) ΔV PG = 6.0 mV 0 pA 50 pA ΔV G or ΔB: redistribute electrons between edge channels High current if outer edge channel in resonance Analogy to capacitively coupled double quantum dot V PG (V) I SD (pA) 0 50 I SD (pA) 0 50 B (T)

Coulomb-Coupled Edge Channels ν QPC ≈ 0, ν bulk = nm ΔB = 3.0 mT B (T) V PG (V) ΔV PG = 6.0 mV 0 pA 50 pA ΔV G or ΔB: redistribute electrons between edge channels High current if outer edge channel in resonance Analogy to capacitively coupled double quantum dot ν QPC ≈ 0, ν bulk = nm ΔB = 1.5 mT B (T) V PG (V) ΔV PG = 6.1 mV 0 pA 100 pA see also: P. L. McEuen et al., Phys. Rev. Lett. 66, 14 (1991) N. C. van der Vaart et al., Phys. Rev. Lett. 73, 320 (1994) T. Heinzel et al., Phys. Rev. B 50, 20 (1994)

Analogy: Double Quantum Dot 400 nm nmnm n-1 m n+1 m-2 n m-1 n m-2 n+1 m-1 n-1 m-1 VGVG B Capacitor network model Reconstuct hexagon pattern from peak positions B-field axis tilted  edge state radii differ by ≈ 60 nm ΔB = 3.0 mT ΔV PG (shifted) ΔB = 1.5 mT ΔV PG (shifted) ν QPC ≈ 0, ν bulk = 2 ν QPC ≈ 0, ν bulk = 4 CLCL ν = 1 C 1-PG C 2-PG PG C 1-2 ν = 2 ν = 0 E x y

Charge Detection 400 nm Capacitively coupled QPC Detect transferred charge Future studies: Can we detect fractional charge? QPC t (s) I QPC (pA) V G (V) # of Events S. Baer, C. Rössler et al., submitted

Summary & Outlook Quantum Point Contacts in Ultra Clean Electron Systems Extract shape parameters Many-body effects 0.7 anomaly Enhanced spin-splitting Fractional edge channels Interferometry Interplay between Coulomb-blockade and Aharonov-Bohm effect Charge detection in the QHE-regime S. Baer, C. Rössler et al., submitted (2012) C. Rössler et al., New J. Phys. 12, (2010) C. Rössler et al., New J. Phys. 13, (2011) Scanning Gate Microscopy Imaging interference in real space Talk of Aleksey Kozikov on Friday 500 nm S. Schnez, CR et al., Phys. Rev. B 84, (2011) A. A. Kozikov, C. Rössler et al., submitted (2012)