1 Color Kyongil Yoon. 2004-02-12 2VISA Color Chapter 6, “Computer Vision: A Modern Approach” The experience of colour Caused by the vision system responding.

Slides:



Advertisements
Similar presentations
13- 1 Chapter 13: Color Processing 。 Color: An important descriptor of the world 。 The world is itself colorless 。 Color is caused by the vision system.
Advertisements

What is Color? Color is related to the wavelength of light. If a color corresponds to one particular wavelength, this is called spectral color. =600 nm.
Introduction to Computer Graphics ColorColor. Specifying Color Color perception usually involves three quantities: Hue: Distinguishes between colors like.
Computer Vision - A Modern Approach Set: Color Slides by D.A. Forsyth Causes of color The sensation of color is caused by the brain. Some ways to get this.
Colour Reading: Chapter 6 Light is produced in different amounts at different wavelengths by each light source Light is differentially reflected at each.
Color Image Processing
School of Computing Science Simon Fraser University
CS 4731: Computer Graphics Lecture 24: Color Science
SWE 423: Multimedia Systems Chapter 4: Graphics and Images (2)
© 2002 by Yu Hen Hu 1 ECE533 Digital Image Processing Color Imaging.
Computer Vision Color Marc Pollefeys COMP 256. Computer Vision Last class point source model N S N S.
Color.
What is color for?.
CSE399b Computer Vision Spring 2006 Jianbo Shi Color.
COLOR and the human response to light
Lecture 4: The spectrum, color theory and absorption and photogrammetry Thursday, 14 January Ch 2.3 (color film)
1 CSCE441: Computer Graphics: Color Models Jinxiang Chai.
CS559-Computer Graphics Copyright Stephen Chenney Color Recap The physical description of color is as a spectrum: the intensity of light at each wavelength.
Why Care About Color? Accurate color reproduction is commercially valuable - e.g. Kodak yellow, painting a house Color reproduction problems increased.
Colour in Computer Graphics Mel Slater. Outline: This time Introduction Spectral distributions Simple Model for the Visual System Simple Model for an.
Color & Color Management. Overview I. Color Perception Definition & characteristics of color II. Color Representation RGB, CMYK, XYZ, Lab III. Color Management.
Human Vision CS200 Art Technology Spring The Retina Contains two types of photoreceptors – Rods – Cones.
Light, Color and Imaging. Light The Electromagnetic Spectrum: E = h.
9/14/04© University of Wisconsin, CS559 Spring 2004 Last Time Intensity perception – the importance of ratios Dynamic Range – what it means and some of.
Course Website: Digital Image Processing Colour Image Processing.
Digital Image Processing Colour Image Processing.
Colorimetry - Introduction
How do we perceive colour? How do colours add?. What is colour? Light comes in many “colours”. Light is an electromagnetic wave. Each “colour” is created.
Color Theory What is color? How do we describe and match colors? Color spaces.
1 Chapter 6: Color Preview 。 The world is colorless 。 Color is caused by the vision system responding differently to different wavelengths of light 。 Brightness.
Chapter 3: Colorimetry How to measure or specify color? Color dictionary?
Oct 10, Image Formation: Light Sources + Reflectance + Sensors Light is produced in different amounts at different wavelengths by each light source.
Color. Contents Light and color The visible light spectrum Primary and secondary colors Color spaces –RGB, CMY, YIQ, HLS, CIE –CIE XYZ, CIE xyY and CIE.
Color 2011, Fall. Colorimetry : Definition (1/2) Colorimetry  Light is perceived in the visible band from 380 to 780 nm  distribution of wavelengths.
Color Theory ‣ What is color? ‣ How do we perceive it? ‣ How do we describe and match colors? ‣ Color spaces.
Red, green and blue (RGB): RGB is another way to use 3 numbers to specify a color instead of using an intensity-distribution curve or HSB In addition.
Chapter 22 Physics A First Course Light and Optics.
Light Can Act Like Waves or Particles In 1801 Thomas Young an English scientist did the Double slit experiment. In 1801 Thomas Young an English scientist.
CSC361/ Digital Media Burg/Wong
CS6825: Color 2 Light and Color Light is electromagnetic radiation Light is electromagnetic radiation Visible light: nm. range Visible light:
CS 376 Introduction to Computer Graphics 01 / 24 / 2007 Instructor: Michael Eckmann.
Graphics Lecture 4: Slide 1 Interactive Computer Graphics Lecture 4: Colour.
Sensory Information Processing
Mixing the broad distributions of green and red yields yellow. Although the resulting spectral distribution is very different from spectral yellow. If.
CS654: Digital Image Analysis Lecture 29: Color Image Processing.
Introduction to Computer Graphics
Color Models. Color models,cont’d Different meanings of color: painting wavelength of visible light human eye perception.
Colors of Pigment The primary colors of pigment are magenta, cyan, and yellow. [
1 CSCE441: Computer Graphics: Color Models Jinxiang Chai.
CS-321 Dr. Mark L. Hornick 1 Color Perception. CS-321 Dr. Mark L. Hornick 2 Color Perception.
David Luebke 1 2/5/2016 Color CS 445/645 Introduction to Computer Graphics David Luebke, Spring 2003.
FRS 123: Technology in Art and Cultural Heritage Color.
Image credit: Wikipedia (Fovea) Human Eye Some interesting facts – Rod cells: requires only low light b/w vision blur, all over retina EXCEPT fovea – Cone.
09/10/02(c) University of Wisconsin, CS559 Fall 2002 Last Time Digital Images –Spatial and Color resolution Color –The physics of color.
Computer Graphics: Achromatic and Coloured Light.
1 of 32 Computer Graphics Color. 2 of 32 Basics Of Color elements of color:
Color Models Light property Color models.
Half Toning Dithering RGB CMYK Models
Color September, 30.
Color Image Processing
Color Image Processing
(c) University of Wisconsin, CS559 Spring 2002
COLOR space Mohiuddin Ahmad.
Color Image Processing
© University of Wisconsin, CS559 Spring 2004
Color Representation Although we can differentiate a hundred different grey-levels, we can easily differentiate thousands of colors.
Color Image Processing
Slides taken from Scott Schaefer
Color Image Processing
Color Theory What is color? How do we perceive it?
Presentation transcript:

1 Color Kyongil Yoon

VISA Color Chapter 6, “Computer Vision: A Modern Approach” The experience of colour Caused by the vision system responding differently to different wavelengths of light. Radiometric vocabulary to describe energy arriving in different quantities at different wavelengths Human color perception Different ways of describing colors

VISA The Physics of Color Per unit wavelength to yield spectral units Per unit wavelength to yield spectral units BRDF or albedo with wavelength BRDF or albedo with wavelength Spectral radiance Spectral radiance The color of source The color of source Black body radiators Black body radiators Spectral power distribution depends only on the temperature of the body Spectral power distribution depends only on the temperature of the body Color temperature of a light source Color temperature of a light source The sun and the sky The sun and the sky The sun: a point light source, daylight, yellow The sun: a point light source, daylight, yellow The sky: a source consisting of a hemisphere with constant existence, skylight (airlight), blue The sky: a source consisting of a hemisphere with constant existence, skylight (airlight), blue Artificial Illumination Artificial Illumination Incandescent light: roughly black-body model Incandescent light: roughly black-body model Fluorescent light: bluish tinge, mimic natural daylight Fluorescent light: bluish tinge, mimic natural daylight Others Others

VISA The Physics of Color The color of surfaces The color of surfaces Result of various mechanisms: different absorbtion at different wavelengths, refraction, diffraction, bulk scattering Result of various mechanisms: different absorbtion at different wavelengths, refraction, diffraction, bulk scattering (Spectral) reflectance + (spectral) albedo (Spectral) reflectance + (spectral) albedo Specular reflection Specular reflection

VISA Human Color Perception Color matching Color matching Let people match a given color using a certain number of primaries Let people match a given color using a certain number of primaries Subtractive matching Subtractive matching Trichromacy Trichromacy Three primaries are required Three primaries are required Subtractive matching, Independent Subtractive matching, Independent Implies three distinct types of color transducer in the eye Implies three distinct types of color transducer in the eye Grassman’s law Grassman’s law If we mix two test lights, then mixing the matches will match the result if T a = w a1 P 1 +w a2 P 2 +w a3 P 3 and T b = w b1 P 1 +w b2 P 2 +w b3 P 3 then (T a + T b ) = (w a1 +w b1 )P 1 +(w a2 +w b2 )P 2 +(w a3 +w b3 )P 3 If we mix two test lights, then mixing the matches will match the result if T a = w a1 P 1 +w a2 P 2 +w a3 P 3 and T b = w b1 P 1 +w b2 P 2 +w b3 P 3 then (T a + T b ) = (w a1 +w b1 )P 1 +(w a2 +w b2 )P 2 +(w a3 +w b3 )P 3 If two test lights can be matched with the same set of weights, then they will match each other if T a = w a1 P 1 +w a2 P 2 +w a3 P 3 and T b = w b1 P 1 +w b2 P 2 +w b3 P 3 then T a = T b If two test lights can be matched with the same set of weights, then they will match each other if T a = w a1 P 1 +w a2 P 2 +w a3 P 3 and T b = w b1 P 1 +w b2 P 2 +w b3 P 3 then T a = T b Matching is linear if T a = w a1 P 1 +w a2 P 2 +w a3 P 3 then kT a = (kw a1 )P 1 +(kw a2 )P 2 +(kw a3 )P 3 Matching is linear if T a = w a1 P 1 +w a2 P 2 +w a3 P 3 then kT a = (kw a1 )P 1 +(kw a2 )P 2 +(kw a3 )P 3 Some exceptions Some exceptions

VISA Human Color Perception Color receptors Color receptors We can assume that there are three distinct types of receptor in the eye that mediate color perception We can assume that there are three distinct types of receptor in the eye that mediate color perception Turns incident light into neural signals Turns incident light into neural signals The principle of univariance The principle of univariance The activity of receptors is of one kind The activity of receptors is of one kind Rods and Cones Rods and Cones Cones dominate color vision Cones dominate color vision Three type of cones differentiated by their sensitivity Three type of cones differentiated by their sensitivity S, M, and L cones (not necessarily blue, green, and red) S, M, and L cones (not necessarily blue, green, and red)

VISA Representing Color (Linear Color Spaces) Linear color space Linear color space Agree on a standard set of primaries Agree on a standard set of primaries Describe any color light by the three weights Describe any color light by the three weights Easy to use Easy to use Color matching functions Color matching functions Unit radiance source Unit radiance source Spectral radiance source Spectral radiance source How to deal with subtractive matching How to deal with subtractive matching Negative weight value Negative weight value Standardization by CIE Standardization by CIE Commission international d’eclairage Commission international d’eclairage

VISA

VISA Linear Color Spaces CIE XYZ Popular standard Popular standard Color matching functions were chosen to be everywhere positive Color matching functions were chosen to be everywhere positive Impossible to get primaries Impossible to get primaries

VISA CIE xy The horseshoe line (spectral locus) is the spectral locus. The horseshoe line (spectral locus) is the spectral locus. Hue changes one moves around the spectral locus Hue changes one moves around the spectral locus Out-of-date? Out-of-date?

VISA Linear Color Spaces RGB RGB Uses single wavelength primaries (645.16nm for R, nm for G, nm for B) Uses single wavelength primaries (645.16nm for R, nm for G, nm for B) CMY and black CMY and black Red, yellow, blue: primary colors in subtractive mixture Red, yellow, blue: primary colors in subtractive mixture Simplest color space for subtractive matching Simplest color space for subtractive matching Cyan (W-R), Magenta (W-G), Yellow (W-B) Cyan (W-R), Magenta (W-G), Yellow (W-B) C+M = (W-R) + (W-G) = R+G+B-R-G = B C+M = (W-R) + (W-G) = R+G+B-R-G = B Practical printer uses an additional black Practical printer uses an additional black Quality Quality Cost Cost

VISA

VISA Representing Color (Non-Linear Color Space) Disadvantage of linear space Disadvantage of linear space Does not encode common properties such hue, saturation Does not encode common properties such hue, saturation Not intuitive Not intuitive Hue, saturation, and value Hue, saturation, and value Hue: the property that varies in passing from red to green Hue: the property that varies in passing from red to green Saturation: the property that varies in passing from red to pink Saturation: the property that varies in passing from red to pink Value: brightness (lightness) Value: brightness (lightness)

VISA

VISA Non-Linear Color Space Uniform Color Space Uniform color space Uniform color space The distance in coordinate space is a fair guide to the significance of the difference The distance in coordinate space is a fair guide to the significance of the difference Just noticeable differences Just noticeable differences CIE u’v’ space CIE u’v’ space CIE LAB CIE LAB Most popular Most popular Good guide to understand how different two colors will look to a human observer Good guide to understand how different two colors will look to a human observer

VISA

VISA Spatial and Temporal Effects Chromatic adaptation Chromatic adaptation Assimilation Assimilation Contrast Contrast

VISA Statistical Modeling of Colour Data Daniel C. Alexander, Bernard Buxton Daniel C. Alexander, Bernard Buxton Become standard to model Become standard to model Single mode distribution of color data by ignoring the intensity component and constructing a Gaussian model of the chromaticity Single mode distribution of color data by ignoring the intensity component and constructing a Gaussian model of the chromaticity