MPNNSTALSLANVTYITMEIFIGLCAIVGNVLVICVVKLNPSLQTTTFYFIVSLA LADIAVGVLVMPLAIVVSLGITIHFYSCLFMTCLLLIFTHASIMSLLAIAVDRYL RVKLTVRYKRVTTHRRIWLALGLCWLVSFLVGLTPMFGWNMKLTSEYHRNV.

Slides:



Advertisements
Similar presentations
Structure Prediction of the Prostaglandin E2 Receptor Stephen Dutz Courtney Edwards August 23, 2007 Advisor: William A Goddard III California Institute.
Advertisements

Secondary structure elements  helices  strands/sheets/barrels  turns The type of 2° structure is determined by the amino acid sequence –Chemical & physical.
Receptors and transduction mechanisms II Chapter 12 –The Neuron by Levitan and Kacsmarek.
Finding detailed relationships between proteins specific to phenotypes among microbial organisms Daniel Park Molecular Biology Institute, UCLA Yeates lab.
Assigning Transmembrane Segments to Helices in Intermediate-Resolution Structures Angela Enosh Sarel J. Fleishman Nir Ben-Tal & Dan Halperin Adapted from.
Prediction to Protein Structure Fall 2005 CSC 487/687 Computing for Bioinformatics.
Southern California Bioinformatics Summer Institute Wendie Johnston, Beverly Krilowicz, Jamil Momand, Sandra Sharp, Nancy Warter- Perez.
An Introduction to Bioinformatics Protein Structure Prediction.
Southern California Bioinformatics Summer Institute Wendie Johnston, Beverly Krilowicz, Jamil Momand, Sandra Sharp, Nancy Warter-Perez.
Prediction of NO Oxidizable Cysteines Larry Grant Dr. Jamil Momand Cal State L.A.
Southern California Bioinformatics Summer Institute Wendie Johnston, Beverly Krilowicz, Jamil Momand, Sandra Sharp, Nancy Warter-Perez.
Presented by Alana Canfield William Goddard Ravi Abrol and Soo-Kyung Kim SoCalBSI Program August 21, 2008 Computational Analysis of the Structure of Human.
Enhancing the C-48 STAT3 Inhibitor
Larry Lam Southern California Bioinformatics Summer Institute 2009 Graeber Lab – Crump Institute for Molecular Imaging UCLA A Data Management and Analysis.
Protein structure determination & prediction. Tertiary protein structure: protein folding Three main approaches: [1] experimental determination (X-ray.
Cell signals and control pathways List and describe the components in specific 2nd messenger signal transduction pathways Define each of the following.
PREDICTION OF PROTEIN FEATURES Beyond protein structure (TM, signal/target peptides, coiled coils, conservation…)
Computational studies of intramolecular disulfide bonded catenanes as a novel stabilizing mechanism in thermophilic microbes August 23, 2007 Daniel Park.
TRANSLATIONAL RESEARCH New Therapies for MS Dennis Bourdette, M.D. and Arthur A. Vandenbark, Ph.D. TCR peptide therapy Recombinant TCR ligand (RTL) therapy.
Genetic Effects of Stress in Vervet Monkey Olivera Grujic Dr. Eleazar Eskin’s Lab, UCLA Dr. Nelson Freimer’s Lab,UCLA SoCalBSI, 2008.
CSULA-COH Cancer Collaborative
Bioinformatics for biomedicine Protein domains and 3D structure Lecture 4, Per Kraulis
1. A project of David Lutje Hulsik and Tim Hulsen May 7th,
Rational Drug Design Soma Mandal, Mee'nal Moudgil, Sanat K. Mandal.
Practical session 2b Introduction to 3D Modelling and threading 9:30am-10:00am 3D modeling and threading 10:00am-10:30am Analysis of mutations in MYH6.
Advanced Cancer Topics Journal Review 4/16/2009 AD.
Figure 16-1 Essential Cell Biology (© Garland Science 2010)
Computational prediction of 3D Structure of Bilitranslocase Membrane Transporter: Drug Development Perspectives Amrita Roy Choudhury National Institute.
Amyotrophic Lateral Sclerosis and Superoxide Dimutase 1 (SOD1) Iasson Yi CHEM 4700.
G Protein-Coupled Receptors Stuart C. Sealfon. Major Classes of GPCRs Class I: rhodopsin-like Class II: glucagon-like Class III: metabotropic glutamate-like.
Β-Catenin, Cancer, and G Proteins Not Just for Frizzleds Anymore Ming Yang et al. PNAS Maria Domenica Castellone et al. Science
Neural Networks for Protein Structure Prediction Brown, JMB 1999 CS 466 Saurabh Sinha.
Molecular Dynamics Simulations and Docking Studies of AChBP and the Ligand Binding Domain of α7 nAChR Shiva Amiri JC
Receptors and transduction 2 References: Chapter 12 – Neuron by Levitan & Kaczmarek OR Chapter 6 – Neuroscience by Purves et al 1)Metabotropic glutamate.
CHAPTER 11 CELL COMMUNICATION 1. WHAT YOU SHOULD KNOW: The 3 stages of cell communication: reception, transduction, and response. How G-protein-coupled.
Cell Membrane: Structure and Function
Rational Drug Design Dr Robert Sbaglia. Curriculum Vitae Bachelor of Science (Honours), University of Melbourne Bachelor of Science.
Protein Structure Prediction ● Why ? ● Type of protein structure predictions – Sec Str. Pred – Homology Modelling – Fold Recognition – Ab Initio ● Secondary.
Alignment & Secondary Structure You have learned about: Data & databases Tools Amino Acids Protein Structure Today we will discuss: Aligning sequences.
Protein Folding & Biospectroscopy Lecture 6 F14PFB David Robinson.
Advancing X-ray Crystallography via Protein Structure Prediction Acknowledgements: Dr. Jingfen Zhang Tran Nguyen Dr. Rajkumar Bondugula Dr. Dong Xu Dr.
 The generated models are used in various coarse-grain and other molecular modelling studies.  Coarse-grain analysis includes: Gaussian Network Models.
Bioinformatics Chem 434 Dr. Nancy Warter-Perez Computer Engineering Dr. Jamil Momand Chemistry & Biochemistry.
AP Biology Cell Communication CHAPTER 11. Warm-Up 1. Why do you communicate? 2. How do you communicate? 3. How do you think cells communicate? 4. Do you.
Transmembrane receptor (Handout) prof. aza. Transmembrane receptors are integral membrane proteins, which reside and operate typically within a cell's.
httpwww.youtube.com/watch?v=DhxD6sVQEYc:// The Drug Discovery Process.
Receptor Tyrosine Kinases

An Introduction to Medicinal Chemistry 3/e PROTEINS AS DRUG TARGETS:
Transmembrane and GPCR Mohammed Mohammed Khan PhD Scholar- Department of Biochemistry King Abdul-Aziz University.
Homology Modeling of the Human Olfactory Receptor O2D2
Volume 19, Issue 8, Pages (August 2011)
Università degli Studi di Milano
Cell to Cell Communication via Steroids & Hormones
Protein Structure Prediction
An Introduction to Medicinal Chemistry 3/e PROTEINS AS DRUG TARGETS:
Bioinformatics and molecular modeling studies of membrane proteins
Skeletal System Notes Functions and Organs.
Volume 90, Issue 1, Pages (January 2006)
Reporter: Yu Lun Kuo (D )
An Introduction to Medicinal Chemistry 3/e PROTEINS AS DRUG TARGETS:
Opioid Receptor Three-Dimensional Structures from Distance Geometry Calculations with Hydrogen Bonding Constraints  Irina D. Pogozheva, Andrei L. Lomize,
Eph Nomenclature Committee  Cell 
Volume 86, Issue 4, Pages (April 2004)
Molecular model of the PTH(1–34)•PTHR1 complex.
Volume 90, Issue 1, Pages (January 2006)
GPCR-I-TASSER: A Hybrid Approach to G Protein-Coupled Receptor Structure Modeling and the Application to the Human Genome  Jian Zhang, Jianyi Yang, Richard.
Volume 19, Issue 8, Pages (August 2011)
An Introduction to Medicinal Chemistry 3/e PROTEINS AS DRUG TARGETS:
Molecular Modeling of the Human A1 Adenosine Receptor
Presentation transcript:

MPNNSTALSLANVTYITMEIFIGLCAIVGNVLVICVVKLNPSLQTTTFYFIVSLA LADIAVGVLVMPLAIVVSLGITIHFYSCLFMTCLLLIFTHASIMSLLAIAVDRYL RVKLTVRYKRVTTHRRIWLALGLCWLVSFLVGLTPMFGWNMKLTSEYHRNV TFLSCQFVSVMRMDYMVYFSFLTWIFIPLVVMCAIYLDIFYIIRNKLSLNLSNSK ETGAFYGREFKTAKSLFLVLFLFALSWLPLSIINCIIYFNGEVPQLVLYMGILLSH ANSMMNPIVYAYKIKKFKETYLLILKACVVCHPSDSLDTSIEKNSE PNNSTAL SLANVTYITMEIFIGLCAIVGNVLVICVVKLNPSLQTTTFYFIVSLALADIA VGVLVMPLAIVVSLGITIHFYSCLFMTCLLLIFTHASIMSLLAIAVDRYLRV KLTVRYKRVTTHRRIWLALGLCWLVSFLVGLTPMFGWNMKLTSEYHR NVTFLSCQFVSVMRMDYMVYFSFLTWIFIPLVVMCAIYLDIFYIIRNKLSL NLSNSKETGAFYGREFKTAKSLFLVLFLFALSWLPLSIINCIIYFNGEVP QLVLYMGILLSHANSMMNPIVYAYKIKKFKETYLLILKAC VVCHPSDSLDTSIEKNSE Presented by Lindsay Riley Goddard Group, Caltech SoCalBSI, CalStateLA 20 August 2009

 Good target for  Important to know structure for drug specification  Good target for  Important to know structure for drug specification BACKGROUND G-protein-coupled receptor (GPCR)  7 transmembrane helices  exterior  interior  Involved in many cell signaling pathways BACKGROUND G-protein-coupled receptor (GPCR)  7 transmembrane helices  exterior  interior  Involved in many cell signaling pathways

FUNCTION Prevents restriction of blood flow in brain and heart Anti-inflammatory, anti-cancer effects Protection of spinal cord and bone marrow FUNCTION Prevents restriction of blood flow in brain and heart Anti-inflammatory, anti-cancer effects Protection of spinal cord and bone marrow Kim, S., Jacobson, K. “Three-Dimensional Quantitative Structure – Activity Relationship of Nucleosides Acting at the A3 Adenosine Receptor: Analysis of Binding and Relative Efficacy.” J. Chem. Inf. Model. 2007, 47, THERAPEUTIC IMPLICATIONS A3 ligand (IB-MECA) in Phase II clinical trials for treatment of rheumatoid arthritis and metastatic colorectal tumors THERAPEUTIC IMPLICATIONS A3 ligand (IB-MECA) in Phase II clinical trials for treatment of rheumatoid arthritis and metastatic colorectal tumors

Difficult to perform X-ray crystallography on transmembrane proteins Only 2 / 800 human GPCR structures determined via X-ray crystallography: Bovine rhodopsin Squid rhodopsin Turkey β1-adrenergic receptor Human β2-adrenergic receptor Human A2a-adenosine receptor Difficult to perform X-ray crystallography on transmembrane proteins Only 2 / 800 human GPCR structures determined via X-ray crystallography: Bovine rhodopsin Squid rhodopsin Turkey β1-adrenergic receptor Human β2-adrenergic receptor Human A2a-adenosine receptor

Predict structure using all-atom based first principles methods Predict structure using all-atom based first principles methods GEnSeMBLE Homology Helix 1. Align and homologize 2. Optimize helices 3. BiHelix 4. CombiHelix 5. Analyze top structures 6. SuperBiHelix Final Structure 1. Hydrophobicity profile 2. OptHelix 3. Align to template 4. BiHelix 5. Combihelix 6. Analyze top structures 7. SuperBiHelix Final Structure

MPNNSTALSLANVTYITMEIFIGLCAIVGNVLVICVVKLNPSLQTTT FYFIVSLALADIAVGVLVMPLAIVVSLGITIHFYSCLFMTCLLLIFTHA SIMSLLAIAVDRYLRVKLTVRYKRVTTHRRIWLALGLCWLVSFLVGL TPMFGWNMKLTSEYHRNVTFLSCQFVSVMRMDYMVYFSFLTWIFI PLVVMCAIYLDIFYIIRNKLSLNLSNSKETGAFYGREFKTAKSLFLVLF LFALSWLPLSIINCIIYFNGEVPQLVLYMGILLSHANSMMNPIVYAY KIKKFKETYLLILKAC VVCHPSDSLDTSIEKNSE GEnSeMBLE 1. Align and homologize 2. Optimize helices 3. BiHelix 4. CombiHelix 5. Analyze top structures 6. SuperBiHelix Homology Helix

CLUSTAL multiple sequence alignment sp|P33765|AA3R_HUMAN MPNNSTALSLANVTYITMEIFIGLCAIVGNVLVICVVKLNPSLQTTTFYF 50 sp|P29274|AA2AR_HUMAN MP------IMGSSVYITVELAIAVLAILGNVLVCWAVWLNSNLQNVTNYF 44 ** :...***:*: *.: **:*****.* **..**..* ** sp|P33765|AA3R_HUMAN IVSLALADIAVGVLVMPLAIVVSLGITIHFYSCLFMTCLLLIFTHASIMS 100 sp|P29274|AA2AR_HUMAN VVSLAAADIAVGVLAIPFAITISTGFCAACHGCLFIACFVLVLTQSSIFS 94 :**** ********.:*:**.:* *: :.***::*::*::*::**:* sp|P33765|AA3R_HUMAN LLAIAVDRYLRVKLTVRYKRVTTHRRIWLALGLCWLVSFLVGLTPMFGWN 150 sp|P29274|AA2AR_HUMAN LLAIAIDRYIAIRIPLRYNGLVTGTRAKGIIAICWVLSFAIGLTPMLGWN 144 *****:***: :::.:**: :.* * :.:**::** :*****:*** sp|P33765|AA3R_HUMAN ---MKLTSEYHRN---VTFLSCQFVSVMRMDYMVYFSFLTWIFIPLVVMC 194 sp|P29274|AA2AR_HUMAN NCGQPKEGKNHSQGCGEGQVACLFEDVVPMNYMVYFNFFACVLVPLLLML 194.: * : ::* *.*: *:*****.*:: :::**::* sp|P33765|AA3R_HUMAN AIYLDIFYIIRNKLSLNLSN---SKETGAFYGREFKTAKSLFLVLFLFAL 241 sp|P29274|AA2AR_HUMAN GVYLRIFLAARRQLKQMESQPLPGERARSTLQKEVHAAKSLAIIVGLFAL 244.:** ** *.:*. *:.:.: : :*.::**** ::: **** sp|P33765|AA3R_HUMAN SWLPLSIINCIIYFN---GEVPQLVLYMGILLSHANSMMNPIVYAYKIKK 288 sp|P29274|AA2AR_HUMAN CWLPLHIINCFTFFCPDCSHAPLWLMYLAIVLSHTNSVVNPFIYAYRIRE 294.**** ****: :*...* ::*:.*:***:**::**::***:*:: sp|P33765|AA3R_HUMAN FKETYLLILKACVV CHPSDSLDTSIEKNSE sp|P29274|AA2AR_HUMAN FRQTFRKIIRSHVLRQQEPFKAAGTSARVLAAHGSDGEQVSLRLNGHPPG 344 *::*: *::: *:.* **. :.*:. *.. sp|P33765|AA3R_HUMAN sp|P29274|AA2AR_HUMAN VWANGSAPHPERRPNGYALGLVSGGSAQESQGNTGLPDVELLSHELKGVC 394 sp|P33765|AA3R_HUMAN sp|P29274|AA2AR_HUMAN PEPPGLDDPLAQDGAGVS 412

Side View Top View

MPNNSTALSLANVTYITMEIFIGLCAIVGNVLVICVVKLNPSLQTTT FYFIVSLALADIAVGVLVMPLAIVVSLGITIHFYSCLFMTCLLLIFTHA SIMSLLAIAVDRYLRVKLTVRYKRVTTHRRIWLALGLCWLVSFLVGL TPMFGWNMKLTSEYHRNVTFLSCQFVSVMRMDYMVYFSFLTWIFI PLVVMCAIYLDIFYIIRNKLSLNLSNSKETGAFYGREFKTAKSLFLVLF LFALSWLPLSIINCIIYFNGEVPQLVLYMGILLSHANSMMNPIVYAY KIKKFKETYLLILKAC VVCHPSDSLDTSIEKNSE GEnSeMBLE 1. Hydrophobicity profile 2. OptHelix 3. Align to template 4. BiHelix 5. CombiHelix 6. Analyze top structures 7. SuperBiHelix GEnSeMBLE

Homology Helix

Secondary Structure Prediction | | | | | | SEQ: VGVLVMPLAIVVSLGITIHFYSCLFMTCLLLIFTHASIMSLLAIAVDRYLRVKLTVRYKR PORTER: HHHccHHHHHHHHHHcccccHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHcccccccc PSIPRED: HHHHHHHHHHHHHccccccccHHHHHHHHHHHHHHHHHHHHHHHHHHHEEEEcccccccE OLD_RAW: HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH OLD_CAP: HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH | | | | | | SEQ: SFLTWIFIPLVVMCAIYLDIFYIIRNKLSLNLSNSKETGAFYGREFKTAKSLFLVLFLFA PORTER: HHHHHcHHHHHHHHHHHHHHHHHHHHHHccccccccccccHHHHHHHHHHHHHHHHHHHH PSIPRED: HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHcccccHHHHHHHHHHHHHHHHHHHHHH OLD_RAW: HHHHHHHHHHHHHHHHHHHH HHHHHHHH OLD_CAP: HHHHHHHHHHHHHHHHHHHHHHHHH HHHHHHHHHHH TM2 & TM3 TM6

* Proline and Glycine residues displayed

GEnSeMBLE Homology Helix 1. Align and homologize 2. Optimize helices 3. BiHelix 4. CombiHelix 5. Analyze top structures 6. SuperBiHelix Final Structure 1. Hydrophobicity profile 2. OptHelix 3. Align to template 4. BiHelix 5. Combihelix 6. Analyze top structures 7. SuperBiHelix Final Structure

Dock Ligands DarwinDockMatching GEnSeMBLE Homology Helix Final Structure or

Dock Ligands DarwinDockMatching GEnSeMBLE Homology Helix Final Structure or

adenosine Important residues involved in agonist binding (based on mutation experiments) 6 ASP 7 HIS 3 HIS 7 SER

Also working on… analyzing A3 adenosine docking analyzing A3 SuperBiHelix output A2a structure and ligand docking A1 structure and ligand docking A2b structure and ligand docking docking agonists: ClIBMECA & NECA docking antagonists: MRS1292 & NMeClIBMECA To do list… add loops to final structure simulate lipid bilayer Also working on… analyzing A3 adenosine docking analyzing A3 SuperBiHelix output A2a structure and ligand docking A1 structure and ligand docking A2b structure and ligand docking docking agonists: ClIBMECA & NECA docking antagonists: MRS1292 & NMeClIBMECA To do list… add loops to final structure simulate lipid bilayer

Goddard Group at California Institute of Technology Dr. Soo-Kyung Kim Dr. Ravinder Abrol Professor William A. Goddard III Biogroup SoCalBSI at California State University, Los Angeles Dr. Jamil Momand Dr. Sandy Sharp Dr. Nancy Warter-Perez Dr. Wendie Johnston Ronnie Cheng The lovely interns NIH, Pfizer, PharmSelex