27.3 Acid-Base Behavior of Amino Acids. Recall While their name implies that amino acids are compounds that contain an —NH 2 group and a —CO 2 H group,

Slides:



Advertisements
Similar presentations
Proteins: Structure reflects function….. Fig. 5-UN1 Amino group Carboxyl group carbon.
Advertisements

Amino Acids & Proteins Ghollam-Reza Moshtaghi-Kashanian
Proteins and Amino Acids
Amino Acids 1/29/2003. Amino Acids: The building blocks of proteins  amino acids because of the  carboxylic and  amino groups pK 1 and pK 2 respectively.
Biochemistry Macromolecules, Proteins, Amino Acids
Welcome to class of Amino Acids Dr. Meera Kaur. Learning objectives To understand - the structural features of amino acids - the classifications of amino.
Amino Acids, Peptides, Protein Primary Structure Chapter 3.
Amino Acids, Peptides, Protein Primary Structure
Amino Acids, Peptides, Protein Primary Structure
Amino acids (Foundation Block) Dr. Ahmed Mujamammi Dr. Sumbul Fatma.
Amino acids, peptides, and proteins
Of amino acids and weak acids(acetic acid)
Amino Acids, Peptides, and Proteins.. Classification of Amino Acids.
Amino Acids and Peptides
Amino acids: Chemical and Physical Properties
Chapter 27 Amino Acids, Peptides, and Proteins. Nucleic Acids.
Amino acids as amphoteric compounds
Structure and Properties of Amino Acids and Proteins Amino Acids General Features Isomerism, Chirality and Optical Rotation Amphoteric Properties.
Chemistry: An Introduction to General, Organic, and Biological Chemistry, Eleventh Edition Copyright © 2012 by Pearson Education, Inc. Chapter 16 Amino.
27.1 Classification of Amino Acids. Classification of Amino Acids amino acids are classified as , etc. to indicate where the nitrogen atom is relative.
AMINO ACIDS.
Proteins – Amides from Amino Acids
Amino Acids are the building units of proteins
Amino Acids carboxylic acid amine R varies with amino acid R = H
Amino acids. Essential Amino Acids 10 amino acids not synthesized by the body arg, his, ile, leu, lys, met, phe, thr, trp, val Must obtain from the diet.
CH2 H N C OH O Amino Acids and Dipeptides H N C O R1 OH R2.
Amino Acids Colorless, crystalline, water soluble substances Distinguishing features are a -COOH group and a -NH 3 group attached to the same carbon R.
Amino Acids. Amino Acid Structure Basic Structure: – (α) Carbon – Carboxylic Acid Group – Amino Group – R-group Side Chain Determines properties of Amino.
II- Classification according to polarity of side chain (R): A- Polar amino acids: Polar side chains contain groups that are either charged at physiological.
Building Blocks of Proteins and The end-products of Protein digestion.
Amino Acids NH3NH3NH3NH3+ CO2CO2CO2CO2 – an  -amino acid that is an intermediate in the biosynthesis of ethylene + H 3 NCH 2 CH 2 CO 2 – a  -amino acid.
B- Classification according to polarity of side chain (R):
Amino acids structure, physical and chemical properties (Ch 2) Saida Almashharawi Basic Biochemistry CLS
Body System Project Animal Nutrition Chapter 41 Kristy Blake and Krystal Brostek.
Pg. 55. Carbohydrates Organic compounds composed of carbon, hydrogen, and oxygen in a ratio of 1:2:1 Carbohydrates can exist as 1) monosaccharides (simple.
Amino Acids Amino acids are molecules containing an amine group, a carboxylic acid group and a side-chain that varies between different amino acids. The.
Amino Acids  Amino Acids are the building units of proteins. Proteins are polymers of amino acids linked together by what is called “ Peptide bond” (see.
1 Chapter 16 Amino Acids, Proteins, and Enzymes 16.1 Functions of Proteins 16.2 Amino Acids 16.3 Amino Acids as Acids and Bases.
Final Exam – 104A Monday, May 10 8:00 – 11:00 am 100 Noyes AQD,AQE,AQFYuan AQA,AQLSedlacek AQI,AQKSmith 62 Krannert Art Museum AQB,AQCPark AQNGupta AQGPhelan.
Amino Acids, Peptides, and Proteins. Introduction to Amino Acids  There are about 26 amino acids, many others are also known from a variety of sources.
Of Amino Acids Titration curves. Titration of amino acids Titration of glycine Titration of arginine.
CHEMISTRY OF PROTEINS. Zwitter ion German; from zwitter, hybrid  A molecule, especially an amino acid, containing a positively charged ion at one end.
A PRESENTATION ON AMINO ACIDS AND PROTEINS PRESENTED BY SOMESH SHARMA Chemical Engineering Arham Veerayatan Institute of Engineering Technology.
Amino Acids. Amino acids are used in every cell of your body to build the proteins you need to survive. Amino Acids have a two-carbon bond: – One of the.
Amino Acids carboxylic acid amine R varies with amino acid R = H
Protein chemistry Lecture Amino acids are the basic structural units of proteins consisting of: - Amino group, (-NH2) - Carboxyl group(-COOH)
Amino acids Proof. Dr. Abdulhussien Aljebory College of pharmacy
AMINO ACIDS INTRODUCTION.
AMINO ACID.
Biochemistry Free For All
Amino acids.
Protein Folding Notes.
(Foundation Block) Dr. Ahmed Mujamammi Dr. Sumbul Fatma
Proteins Proteins are long polymers made up of 20 different amino acid monomers They are quite large, with molar masses of around 5,000 g/mol to around.
Amino Acids carboxylic acid amine R varies with amino acid R = H
Titration of amino acids
Amino acids (Foundation Block) Dr. Sumbul Fatma.
AMINO ACIDS.
Amino Acids (Foundation Block) 1 Lecture Dr. Usman Ghani
THE PRIMARY STRUCTURES OF PROTEINS
Amino Acids carboxylic acid amine R varies with amino acid R = H
Of amino acids and weak acids(acetic acid)
Fundamentals of Organic Chemistry
Chapter 4: Amino acids By Prof. Sanjay A. Nagdev
Biochemistry Macromolecules, Proteins, Amino Acids
Fundamentals of Organic Chemistry
Fundamentals of Organic Chemistry
Fundamentals of Organic Chemistry
Fundamentals of Organic Chemistry
Fundamentals of Organic Chemistry
Presentation transcript:

27.3 Acid-Base Behavior of Amino Acids

Recall While their name implies that amino acids are compounds that contain an —NH 2 group and a —CO 2 H group, these groups are actually present as —NH 3 + and —CO 2 – respectively. How do we know this?

Properties of Glycine OOH H 2 NCH 2 C – OO H 3 NCH 2 C + The properties of glycine: high melting point (when heated to 233°C it decomposes before it melts) solubility: soluble in water; not soluble in nonpolar solvent more consistent with this than this

Properties of Glycine – OO H 3 NCH 2 C + The properties of glycine: high melting point (when heated to 233°C it decomposes before it melts) solubility: soluble in water; not soluble in nonpolar solvent more consistent with this called a zwitterion or dipolar ion

Acid-Base Properties of Glycine The zwitterionic structure of glycine also follows from considering its acid-base properties. A good way to think about this is to start with the structure of glycine in strongly acidic solution, say pH = 1. At pH = 1, glycine exists in its protonated form (a monocation).

Acid-Base Properties of Glycine The zwitterionic structure of glycine also follows from considering its acid-base properties. A good way to think about this is to start with the structure of glycine in strongly acidic solution, say pH = 1. At pH = 1, glycine exists in its protonated form (a monocation). OOH H 3 NCH 2 C +

Acid-Base Properties of Glycine Now ask yourself "As the pH is raised, which is the first proton to be removed? Is it the proton attached to the positively charged nitrogen, or is it the proton of the carboxyl group?" You can choose between them by estimating their respective pK a s. OOH H 3 NCH 2 C +

Acid-Base Properties of Glycine Now ask yourself "As the pH is raised, which is the first proton to be removed? Is it the proton attached to the positively charged nitrogen, or is it the proton of the carboxyl group?" You can choose between them by estimating their respective pK a s. OOH H 3 NCH 2 C + typical ammonium ion: pK a ~9 typical carboxylic acid: pK a ~5

Acid-Base Properties of Glycine The more acidic proton belongs to the CO 2 H group. It is the first one removed as the pH is raised. OOH H 3 NCH 2 C + typical carboxylic acid: pK a ~5

Acid-Base Properties of Glycine Therefore, the more stable neutral form of glycine is the zwitterion. OOH H 3 NCH 2 C + typical carboxylic acid: pK a ~5 – OO H 3 NCH 2 C +

The measured pK a of glycine is Glycine is stronger than a typical carboxylic acid because the positively charged N acts as an electron-withdrawing, acid-strengthening substituent on the  carbon. Acid-Base Properties of Glycine OOH H 3 NCH 2 C + typical carboxylic acid: pK a ~5

Acid-Base Properties of Glycine – OO H 3 NCH 2 C + The pK a for removal of this proton is This value is about the same as that for NH 4 + (9.3). HO– – OO H 2 NCH 2 C A proton attached to N in the zwitterionic form of nitrogen can be removed as the pH is increased further.

Isoelectric Point pI – OO H 3 NCH 2 C + – OO H 2 NCH 2 C OOH H 3 NCH 2 C + pK a = 2.34 pK a = 9.60 The pH at which the concentration of the zwitterion is a maximum is called the isoelectric point. Its numerical value is the average of the two pK a s. The pI of glycine is 5.97.

Acid-Base Properties of Amino Acids One way in which amino acids differ is in respect to their acid-base properties. This is the basis for certain experimental methods for separating and identifying them. Just as important, the difference in acid-base properties among various side chains affects the properties of the proteins that contain them. Table 27.2 gives pK a and pI values for amino acids with neutral side chains.

Table 27.2 Amino Acids with Neutral Side Chains CCOO – H H H3NH3NH3NH3N + Glycine pK a1 = 2.34 pK a2 =9.60 pI =5.97

Table 27.2 Amino Acids with Neutral Side Chains Alanine pK a1 = 2.34 pK a2 =9.69 pI =6.00 H3NH3NH3NH3N CCOO – CH 3 H +

Table 27.2 Amino Acids with Neutral Side Chains Valine pK a1 = 2.32 pK a2 =9.62 pI =5.96 H3NH3NH3NH3N CCOO – CH(CH 3 ) 2 H +

Table 27.2 Amino Acids with Neutral Side Chains Leucine pK a1 = 2.36 pK a2 =9.60 pI =5.98 H3NH3NH3NH3N CCOO – CH 2 CH(CH 3 ) 2 H +

Table 27.2 Amino Acids with Neutral Side Chains Isoleucine pK a1 = 2.36 pK a2 =9.60 pI =5.98 H3NH3NH3NH3N CC O O – CH 3 CHCH 2 CH 3 H +

Table 27.2 Amino Acids with Neutral Side Chains Methionine pK a1 = 2.28 pK a2 =9.21 pI =5.74 H3NH3NH3NH3N CC O O – CH 3 SCH 2 CH 2 H +

Table 27.2 Amino Acids with Neutral Side Chains Proline pK a1 = 1.99 pK a2 =10.60 pI =6.30 H2NH2NH2NH2N CCOO – H + CH 2 H2CH2CH2CH2C CH2CH2CH2CH2

Table 27.2 Amino Acids with Neutral Side Chains Phenylalanine pK a1 = 1.83 pK a2 =9.13 pI =5.48 H3NH3NH3NH3N CCOO – H + CH 2

Table 27.2 Amino Acids with Neutral Side Chains Tryptophan pK a1 = 2.83 pK a2 =9.39 pI =5.89 H3NH3NH3NH3N CCOO – H + CH 2 H N

Table 27.2 Amino Acids with Neutral Side Chains Asparagine pK a1 = 2.02 pK a2 =8.80 pI =5.41 H3NH3NH3NH3N CC O O – H + H 2 NCCH 2 O

Table 27.2 Amino Acids with Neutral Side Chains Glutamine pK a1 = 2.17 pK a2 =9.13 pI =5.65 H3NH3NH3NH3N CCOO – H + H 2 NCCH 2 CH 2 O

Table 27.2 Amino Acids with Neutral Side Chains Serine pK a1 = 2.21 pK a2 =9.15 pI =5.68 H3NH3NH3NH3N CCOO – CH 2 OH H +

Table 27.2 Amino Acids with Neutral Side Chains Threonine pK a1 = 2.09 pK a2 =9.10 pI =5.60 H3NH3NH3NH3N CC O O – CH 3 CHOH H +

Table 27.3 Amino Acids with Ionizable Side Chains Aspartic acid pK a1 = 1.88 pK a2 =3.65 pK a3 =9.60 pI =2.77 H3NH3NH3NH3N CC O O – H + OCCH 2 O– For amino acids with acidic side chains, pI is the average of pK a1 and pK a2.

Table 27.3 Amino Acids with Ionizable Side Chains Glutamic acid pK a1 = 2.19 pK a2 =4.25 pK a3 =9.67 pI =3.22 H3NH3NH3NH3N CC O O – H + O OCCH 2 CH 2 –

Table 27.3 Amino Acids with Ionizable Side Chains Tyrosine pK a1 = 2.20 pK a2 =9.11 pK a3 =10.07 pI =5.66 H3NH3NH3NH3N CCOO – H + CH 2 OH

Table 27.3 Amino Acids with Ionizable Side Chains Cysteine H3NH3NH3NH3N CCOO – CH 2 SH H + pK a1 = 1.96 pK a2 =8.18 pK a3 =10.28 pI =5.07

Table 27.3 Amino Acids with Ionizable Side Chains Lysine pK a1 = 2.18 pK a2 =8.95 pK a3 =10.53 pI =9.74 H3NH3NH3NH3N CCOO – H + CH 2 CH 2 CH 2 CH 2 NH 3 + For amino acids with basic side chains, pI is the average of pK a2 and pK a3.

Table 27.3 Amino Acids with Ionizable Side Chains Arginine pK a1 = 2.17 pK a2 =9.04 pK a3 =12.48 pI =10.76 H3NH3NH3NH3N CCOO – H + CH 2 CH 2 CH 2 NHCNH 2 + NH2NH2NH2NH2

Table 27.3 Amino Acids with Ionizable Side Chains Histidine pK a1 = 1.82 pK a2 =6.00 pK a3 =9.17 pI =7.59 H3NH3NH3NH3N CCOO – H + CH 2 NH N