Conversion and Reactor sizing

Slides:



Advertisements
Similar presentations
ERT 316: REACTION ENGINEERING CHAPTER 2 CONVERSION & REACTOR SIZING
Advertisements

Chemical Reaction Engineering
                                      제1장 Mole Balance Chemical Reaction Engineering 반응공학 I.
Steady State Nonisothermal Reactor Design
Conversion and Reactor Sizing
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Lecture 1 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
CBE343 Jan 23, APPLICATION OF THE DESIGN EQUATION FOR CONTINUOUS-FLOW REACTORS X -r A [mol/m 3 ∙s]
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Lecture 18 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture18 Thursday 3/13/08 Solution to Tuesdays In-class Problem. User Friendly Energy Balance Derivations Adiabatic (Tuesday’s lecture). Heat Exchange.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Lecture 4 Tuesday 1/15/08 Block 1: Mole Balances Size CSTRs and PFRs given –r A =f(X) Block 2: Rate Laws Reaction Orders Arrhenius Equation Block 3: Stoichiometry.
SABIC Chair in Catalysis at KAU Chemical Reaction Engineering Dr. Yahia Alhamed.
General Mole Balance Equation Batch
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Chemical Reaction Engineering Asynchronous Video Series Chapter 2: Conversion and Reactors in Series H. Scott Fogler, Ph.D.
ISOTHERMAL REACTOR DESIGN
Kjemisk reaksjonsteknikk Chemical Reaction Engineering
Kjemisk reaksjonsteknikk
A First Course on Kinetics and Reaction Engineering
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
© 2014 Carl Lund, all rights reserved A First Course on Kinetics and Reaction Engineering Class 23.
Chemical Reaction Engineering Asynchronous Video Series Chapter 4, Part 1: Applying the Algorithm to a CSTR H. Scott Fogler, Ph.D.
Mole balance for chemical reaction engineering (Design Equations for reactors) Lec 3 week 3.
Chemical Reaction Engineering Asynchronous Video Series Chapter 1: General Mole Balance Equation Applied to Batch Reactors, CSTRs, PFRs, and PBRs H. Scott.
Chemical Reaction Engineering Chapter 4, Part 3: Pressure Drop in a Packed Bed Reactor.
ITK-330 Chemical Reaction Engineering
L4-1 Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois at Urbana-Champaign. Ideal CSTR Design Eq with X A :
Review: Logic of Isothermal Reactor Design
© 2014 Carl Lund, all rights reserved A First Course on Kinetics and Reaction Engineering Class 23.
© 2014 Carl Lund, all rights reserved A First Course on Kinetics and Reaction Engineering Class 29.
Chemical Reaction Engineering Asynchronous Video Series Chapter 3, Part 4: Reaction Stoichiometry Measures Other Than Conversion H. Scott Fogler, Ph.D.
Isothermal Reactor Design
Chemical/Polymer Reactor Design
Chemical Reaction Engineering 1 제 2 장 Conversion and Reactor Sizing 반응공학 1.
Conversion and Reactor Sizing Lec 4 week 4. Definition of Conversion for the following reaction The reaction can be arranged as follows: how far the above.
Lecture 2 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 8 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Kinetics and Reactor Design Kinetics and Reactor Design CHE-402 INSTRUCTOR: Dr. Nabeel Salim Abo-Ghander Chemical Reactions and Rate of Reactions Chapter.
© 2015 Carl Lund, all rights reserved A First Course on Kinetics and Reaction Engineering Class 37.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
CHE 354 Chemical Reactor Design
ChE 402: Chemical Reaction Engineering
ChE 402: Chemical Reaction Engineering
ChE 402: Chemical Reaction Engineering
Chemical Reaction Engineering
The General Mole Balance & Ideal Reactors
Review: Design Eq & Conversion
Conversion and reactor sizing
Chapter Two: Conversion & Reactor Sizing
Steady-state Nonisothermal reactor Design Part I
Steady-state Nonisothermal reactor Design Part I
Lecture 5 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Steady-state Nonisothermal reactor Design Part I
Review Chapters (1 – 6) CHPE550: Catalysis and Catalytic Processes
Lecture 4 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Mustafa Nasser, PhD, MSc, BSc Chemical Engineering
ISOTHERMAL REACTOR DESIGN
Chapter One: Mole Balances
Chapter One: Mole Balances
Review Chapters (1 – 6) CHPE550: Catalysis and Catalytic Processes
Conversion and the Design Equations
Lecture 5 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Mustafa Nasser, PhD, MSc, BSc Chemical Engineering
Lecture 4 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Kinetics and Reactor Design
Presentation transcript:

Conversion and Reactor sizing Chapter 2 Conversion and Reactor sizing

Overview In the first chapter the general mole balance was derived for different reactors In this chapter, these equations are used to size CSTR and PFR using “Conversion” Value and overall conversion of CSTR and PFR arranged in series

2.1 Definition of Conversion Conversion is the number of moles of reactant A (limiting reactant) that has been reacted per mole of A fed to the system For irreversible XA=1 complete conversion For reversible Xmax=Xe equilibrium conversion

2.2 Batch Reactor Design Equation After time t, the number of moles of A remaining is differential form Batch reactor design equation used for reaction rate data analysis Integral form This equation gives the time required to achieve a specified conversion X The longer the reactants are left in the reactor, the greater the conversion

2.3 Design equation for flow reactor Mole balance for reactant A around the reactor In liquid phase CA0 is the solution molarity (moles/volume) In gas phase

CSTR The mole balance for CSTR yields This equation calculates the CSTR volume necessary to achieve a specified conversion X Because of perfect mixing, the exit conc is identical to the conc inside the reactor and the reaction rate is evaluated at the exit conditions FA0 FA

Levenspiel CSTR Plot Volume = Area of rectangle

2.3.2 Tubular Flow Reactor (PFR) No gradient change in T, CA & -Ra The reactants are consumed as they enter and flow axially down the reactor Differential form of design for PFR Integral form used to calculate volume required to achieve specified conversion X

Levenspiel PFR Plot Volume= area under the curve

2.3.3 Packed Bed Reactor Packed bed reactors are analogous to PFR Differential form of the design equation used to analyze the reactor pressure drop Integral form used to determine the catalyst weight in the absence of pressure drop

Applications of the design equations We can size the reactor from the reaction rate, as a function of conversion For the first order For irreversible reactions of greater than zero order For reversible reactions

2.5 Reactors in series For reactors in series where no side stream either fed or withdrawn, the conversion at point i is defined as The molar flow rate at point i is given by FA0 FA1 FA2 FA3 i=1 X1 i=2 X2 i=3 X3

2.5.1 CSTR in Series For 2 CSTR in series FA0 i=1 X1 FA1 -rA1 i=2 FA2

Levenspiel CSTR Plot Volume of CSTR2 Volume of CSTR1 For the same overall conversion, the total volume for 2 CSTRs in series is less than that required for one CSTR

CSTR and PFR Comparison PFR can be modeled with a large number of CSTRs in series. This concept can be used in Catalyst decay in packed bed reactors Transient heat effects in PFRs V5 1 2 3 4 5 V4 V1 V3 V2 1 2 3 4 5

Reactor Mole Balance Summary