The cylcopentadienyl radical revisited: the effects of asymmetric deuteration of Jahn-Teller molecules Samantha Strom, Jinjun Liu Department of Chemistry.

Slides:



Advertisements
Similar presentations
1 THz vibration-rotation-tunneling (VRT) spectroscopy of the water (D 2 O) 3 trimer : --- the 2.94THz torsional band L. K. Takahashi, W. Lin, E. Lee, F.
Advertisements

Conical Intersections between Vibrationally Adiabatic Surfaces in Methanol Mahesh B. Dawadi and David S. Perry Department of Chemistry, The University.
LASER INDUCED FLUORESCENCE STUDY OF B-A TRANSITION OF ISOPROPOXY Rabi Chhantyal-Pun, Terry Miller Department of Chemistry The Ohio State University Jinjun.
Lan Cheng and John Stanton Department of Chemistry,
Submillimeter-wave Spectroscopy of [HCOOCH 3 ] and [H 13 COOCH 3 ] in the Torsional Excited States Atsuko Maeda, Frank C. De Lucia, and Eric Herbst Department.
Rotational Spectroscopy Born-Oppenheimer Approximation; Nuclei move on potential defined by solving for electron energy at each set of nuclear coordinates.
The torsional spectrum of disilane N. Moazzen-Ahmadi, University of Calgary V.-M. Horneman, University of Oulu, Finland.
Vibrational and Rotational Spectroscopy
Terrance J. Codd*, John Stanton†, and Terry A. Miller* * The Laser Spectroscopy Facility, Department of Chemistry and Biochemistry The Ohio State University,
Rovibronic Analysis of the State of the NO 3 Radical Henry Tran, Terrance J. Codd, Dmitry Melnik, Mourad Roudjane, and Terry A. Miller Laser Spectroscopy.
MODERATE RESOLUTION JET COOLED CAVITY RINGDOWN SPECTROSCOPY OF THE A STATE OF NO 3 RADICAL Terrance J. Codd, Ming-Wei Chen, Mourad Roudjane and Terry A.
Probing the electronic structure of the Nickel Monohalides: Spectroscopy of the low-lying electronic states of NiX (X=Cl, Br, I). Lloyd Muzangwa Molecular.
Rotational Spectra of Methylene Cyclobutane and Argon-Methylene Cyclobutane Wei Lin, Jovan Gayle Wallace Pringle, Stewart E. Novick Department of Chemistry.
DMITRY G. MELNIK AND ROBERT F. CURL, The Department of Chemistry and Rice Quantum Institute, Rice University, Houston, Texas 77005; JINJUN LIU, JOHN T.
DMITRY G. MELNIK 1 MING-WEI CHEN 1, JINJUN LIU 2, and TERRY A. MILLER 1, and ROBERT F. CURL 3 and C. BRADLEY MOORE 4 EFFECTS OF ASYMMETRIC DEUTERATION.
VADIM L. STAKHURSKY *, LILY ZU †, JINJUN LIU, TERRY A. MILLER Laser Spectroscopy Facility, Department of Chemistry, The Ohio State University 120 W. 18th.
Laboratory of Molecular Spectroscopy & Nano Materials, Pusan National University, Republic of Korea Spectroscopic Identification of New Aromatic Molecular.
ROTATIONALLY RESOLVED A 2 A 1 - X 2 E ELECTRONIC SPECTRA OF SYMMETRIC METHOXY RADICALS: CH 3 O AND CD 3 O (RI08) Laser Spectroscopy Facility Department.
DMITRY G. MELNIK AND TERRY A. MILLER The Ohio State University, Dept. of Chemistry, Laser Spectroscopy Facility, 120 W. 18th Avenue, Columbus, Ohio
Microwave Spectroscopy and Proton Transfer Dynamics in the Formic Acid-Acetic Acid Dimer Brian Howard, Edward Steer, Michael Tayler, Bin Ouyang (Oxford.
ROTATIONALLY RESOLVED ELECTRONIC SPECTRA OF SECONDARY ALKOXY RADICALS 06/22/10 JINJUN LIU AND TERRY A. MILLER Laser Spectroscopy Facility Department of.
High-resolution threshold photoionization and photoelectron spectroscopy of propene and 2-butyne Julie M. Michaud, Konstantina Vasilatou and Frédéric Merkt.
FTIR EMISSION SPECTROSCOPY AND AB INITIO STUDY OF THE TRANSIENT BO AND HBO MOLECULES 65 th Ohio State University International Symposium on Molecular Spectroscopy.
“Global Fit” of the high resolution infrared data of D 2 S and HDS molecules O. N. Ulenikov, E. S. Bekhtereva Physical Chemistry, ETH-Zurich, CH-8093 Zurich,
DMITRY G. MELNIK AND TERRY A. MILLER The Ohio State University, Dept. of Chemistry, Laser Spectroscopy Facility, 120 W. 18th Avenue, Columbus, Ohio
Electronic Transitions of Palladium Monoboride and Platinum Monoboride Y.W. Ng, H.F. Pang, Y. S. Wong, Yue Qian, and A. S-C. Cheung Department of Chemistry.
Electronic Spectroscopy of DHPH Revisited: Potential Energy Surfaces along Different Low Frequency Coordinates Leonardo Alvarez-Valtierra and David W.
Rotational spectra of molecules in small Helium clusters: Probing superfluidity in finite systems F. Paesani and K.B. Whaley Department of Chemistry and.
SILYL FLUORIDE: LAMB-DIP SPECTRA and EQUILIBRIUM STRUCTURE Cristina PUZZARINI and Gabriele CAZZOLI Dipartimento di Chimica “G. Ciamician”, Università di.
SIMULATION OF THE SPIN-VIBRONIC STRUCTURE IN THE GROUND ELECTRONIC STATE AND EMISSION SPECTRA INTENSITIES FOR CH 3 O RADICAL VADIM L. STAKHURSKY Radiation.
Laboratory of Molecular Spectroscopy, Pusan National University, Pusan, Republic of Korea Spectroscopic identification of isomeric trimethylbenzyl radicals.
ROTATIONALLY RESOLVED A 2 A 1 —X 2 E ELECTRONIC SPECTRA OF DEUTERATED ISOTOPOMERS OF THE METHOXY RADICAL Jinjun Liu, Ming-Wei Chen and Terry A. Miller.
Theoretical Study on Vibronic Interactions and Photophysics of Low-lying Excited Electronic States of Polycyclic Aromatic Hydrocarbons S. Nagaprasad Reddy.
Fourier transform microwave spectra of CO–dimethyl sulfide and CO–ethylene sulfide Akinori Sato, Yoshiyuki Kawashima and Eizi Hirota * The Graduate University.
THE ANALYSIS OF HIGH RESOLUTION SPECTRA OF ASYMMETRICALLY DEUTERATED METHOXY RADICALS CH 2 DO AND CHD 2 O (RI09) MING-WEI CHEN 1, JINJUN LIU 2, DMITRY.
ENERGY LEVELS OF THE NITRATE RADICAL BELOW 2000 CM -1 Christopher S. Simmons, Takatoshi Ichino and John F. Stanton Molecular Spectroscopy Symposium, June.
DMITRY G. MELNIK AND TERRY A. MILLER The Ohio State University, Dept. of Chemistry, Laser Spectroscopy Facility, 120 W. 18th Avenue, Columbus, Ohio
LASER-INDUCED FLUORESCENCE (LIF) SPECTROSCOPY
Effective C 2v Symmetry in the Dimethyl Ether–Acetylene Dimer Sean A. Peebles, Josh J. Newby, Michal M. Serafin, and Rebecca A. Peebles Department of Chemistry,
LASER-INDUCED FLUORESCENCE (LIF) SPECTROSCOPY OF CYCLOHEXOXY
THEORETICAL INVESTIGATION OF LARGE AMPLITUDE MOTION IN THE METHYL PEROXY RADICAL Gabriel Just, Anne McCoy and Terry Miller The Ohio State University.
DISPERSED FLUORESCENCE (DF) SPECTROSCOPY OF JET-COOLED METHYLCYCLOHEXOXY (MCHO) RADICALS Jahangir Alam, Md Asmaul Reza, Amy Mason, Neil Reilly and Jinjun.
JET-COOLED LASER-INDUCED FLUORESCENCE SPECTROSCOPY OF T-BUTOXY NEIL J. REILLY* and JINJUN LIU Department of Chemistry University of Louisville TERRY A.
Photoelectron spectroscopy of the cyclopentadienide anion: Analysis of the Jahn- Teller effects in the cyclopentadienyl radical Takatoshi Ichino, Adam.
Ab initio calculation on the photoelectron spectrum of methoxide Lan Cheng, Takatoshi Ichino, Marissa Weichman, Jongjin Kim, Dan Neumark, and John Stanton.
1 The r 0 Structural Parameters of Equatorial Bromocyclobutane, Conformational Stability from Temperature Dependent Infrared Spectra of Xenon Solutions,
70th International Symposium on the Molecular Spectroscopy June 22-26, 2015 The Laser Spectroscopy Facility Department of Chemistry and Biochemistry Mourad.
Laser Spectroscopy of the C 1 Σ + – X 1 Σ + Transition of ScI ZHENWU LIAO, MEI YANG, MAN-CHOR CHAN Department of Chemistry, The Chinese University of Hong.
Laser spectroscopy of a halocarbocation: CH 2 I + Chong Tao, Calvin Mukarakate, and Scott A. Reid Department of Chemistry, Marquette University 61 st International.
VIBRONIC ANALYSIS FOR TRANSITION OF ISOPROPOXY Rabi Chhantyal-Pun, Mourad Roudjane, Dmitry G. Melnik and Terry A. Miller TD03.
High Resolution Electronic Spectroscopy of 9-Fluorenemethanol (9FM) in the Gas Phase Diane M. Mitchell, James A.J. Fitzpatrick and David W. Pratt Department.
High-resolution mid-infrared spectroscopy of deuterated water clusters using a quantum cascade laser- based cavity ringdown spectrometer Jacob T. Stewart.
HUI LIU, JINJUN LIU, Department of Chemistry, HEMANT M. SHAH and BRUCE W. ALPHENAAR, Department of Electrical & Computer Engineering, University of Louisville.
Md Asmaul Reza, Jahangir Alam, Amy Mason, Neil Reilly and Jinjun Liu Department of Chemistry, University of Louisville JET-COOLED DISPERSED FLUORESCENCE.
JET-COOLED LASER-INDUCED FLUORESCENCE SPECTROSCOPY OF LARGE SECONDARY ALKOXY RADICALS 06/21/10 JINJUN LIU, MING-WEI CHEN, AND TERRY A. MILLER Laser Spectroscopy.
The 61 th International Symposium on Molecular Spectroscopy. ‘06 Funded by: NSF- Exp. Phys. Chem Mag. Hyperfine Interaction in 171 YbF and 173 YbF Timothy.
Fourier-transform microwave spectroscopy of the CCCCl radical Takashi Yoshikawa, Yoshihiro Sumiyoshi, and Yasuki Endo Graduate School of Arts and Sciences,
LASER INDUCED FLUORESCENCE SPECTROSCOPY OF THE SiNSi RADICAL II: IDENTIFICATIONS OF THE A2A1, B2B1, AND D2Sg+ STATES C. MOTOYOSHI, Y. SUMIYOSHI, Y. ENDO.
Rotational spectra of C2D4-H2S, C2D4-D2S, C2D4-HDS and 13CH2CH2-H2S complexes: Molecular symmetry group analysis Mausumi Goswami and E. Arunan Inorganic.
~ ~ DETERMINATION OF THE TRANSITION DIPOLE MOMENT OF THE A - X
BREAKING THE SYMMETRY IN JAHN-TELLER ACTIVE MOLECULES
Analysis of bands of the 405 nm electronic transition of C3Ar
The Rovibronic Spectra of The Cyclopentadienyl Radical (C5H5)
Britta A. Johnson and Edwin L. Sibert III
SIMULATIONS OF VIBRONIC LEVELS IN DEGENERATE ELECTRONIC STATES IN THE PRESENCE OF JAHN-TELLER COUPLING – EXPANSION OF PES THROUGH THIRD ORDER VADIM L.
Bob Grimminger and Dennis Clouthier
Analysis of the Rotationally Resolved Spectra to the Degenerate (
Jinjun Liu, Ming-Wei Chen, John T. Yi,
FLUORESCENCE-DEPLETION INFRARED SPECTROSCOPY
Fourier Transform Infrared Spectral
Presentation transcript:

The cylcopentadienyl radical revisited: the effects of asymmetric deuteration of Jahn-Teller molecules Samantha Strom, Jinjun Liu Department of Chemistry University of Louisville June 19, 2012

LOUISVILLE.EDU  Introduction: Motivation & Goals  Theory  “Experimental” Spectra  Spectral Analysis & Results  Conclusion Outline

LOUISVILLE.EDU  Jahn-Teller (JT) effect- occurs to non- linear polyatomic molecules in orbitally degenerate electronic states  Pseudo-Jahn-Teller (PJT) effect- occurs between two (or several) electronic states that are usually close in energy  Both JT & PJT effects: o Distort the geometry o Lower the molecular symmetry o Decrease the total vibronic energy  JT & PJT molecules are in fluxional motion such as a pseudo-rotation around the Conical Intersection (CI) Jahn-Teller & Pseudo-Jahn-Teller Effects  Jahn-Teller Potential Energy Surface  Pseudo-Jahn-Teller Potential Energy Surface

LOUISVILLE.EDU  PJT-active molecules can be formed from asymmetric substitution of deuteriums, halogens, or methyl groups for hydrogen atoms of JT-active molecules Asymmetric Deuteration  Electronic PESs remain unchanged upon partial or asymmetric deuteration  Vibrational modes and their harmonic frequencies are altered  Vibronic symmetry is lowered whereas electronic symmetry remains the same  Vibrational effect can be separated from vibronic effect Asymmetric Substitution: JT  PJT

LOUISVILLE.EDU Cyclopentadienyl Radical (cp)  Experimental o Laser Induced Fluorescence (LIF)  L. Yu, J.M. Williamson, and T.A. Miller, Chem. Phys. Lett. 162, 431 (1989).  L. Yu, D.W. Cullin, J.M. Williamson, and T.A. Miller, J.Chem. Phys. 98, 2682 (1993). o Dispersed Fluorescence (DF)  B.E. Applegate, A.J. Bezant, and T.A. Miller, J. Chem. Phys. 114, 4869 (2001). o Pulsed-Field Ionization Zero-Kinetic Energy (PFI-ZEKE)  H.J. Wörner, F.Merkt, Angew. Chem. Int. Ed. 45, 293 (2006)  H.J. Wörner, F. Merkt, J.Chem. Phys. 127, (2007).  Computational  M.J. Bearpark, M.A. Robb, and N. Yamamoto, Spectrochim. Acta A 55, 639 (1999).  B.E. Applegate, T.A. Miller, T.A. Barckholtz, J. Chem. Phys. 114, 4855 (2001). C 2v (e x ) C 2v (e y ) D 5h 1.H.J. Wörner and F. Merkt, J. Chem. Phys. 126, (2007). 2.L. Yu, D.W. Cullin, J.M. Williamson, and T.A. Miller, J. Chem. Phys. 98, 2682 (1993).

LOUISVILLE.EDU Asymmetric deuteration C5H4DC5H4DC5H4DC5H4D C5H5/C5D5C5H5/C5D5C5H5/C5D5C5H5/C5D5 C 5 HD 4 1. L. Yu, D.W. Cullin, J.M. Williamson, and T.A. Miller, J. Chem. Phys. 98, 2682 (1993). 2. L. Yu, S.C. Foster, J.M. Williamson, M.C. Heaven, and T.A. Miller, J. Chem. Phys. 92, 4263 (1988). C 5 H 4 D-10K C 5 HD K C 5 H 5 -3K

LOUISVILLE.EDU  Reinvestigate the previous experimental spectra with a new model 1,2, which simulates the two vibronic bands simultaneously  Resolve the discrepancy between experimentally determined and ab initio calculated Jahn-Teller distorted geometries Goals Expt. Ref 1 Expt. Ref 2 Calculated Ref 3 Calculated Ref 4 R CC (2)1.421 (1) ΔR CC ( 2 B 1 ) N/A (5)0.066 ΔR CC ( 2 A 2 ) N/A (5) References 1.L. Yu, J.M. Williamson, and T.A. Miller, Chem. Phys. Lett. 162, 431 (1989). 2.L. Yu, D.W. Cullin, J.M. Williamson, and T.A. Miller, J. Chem. Phys. 98, 2682 (1993). 3.M.J. Bearpark, M.A. Robb, and N. Yamaoto, Spectrochim. Acta A 55, 639 (1999). 4. B.E. Applegate, T.A. Miller, and T.A. Barckholtz, J. Chem. Phys. 114, 4855 (2001). 1.D.Melnik, J. Liu, R.F. Curl, and T.A. Miller, Mol. Phys. 105, 529 (2007). 2.D. Melnik, J. Liu, M.W. Chen, and T.A. Miller, J. Chem. Phys. 135, (2011). CH 2 DOCHD 2 O CH 3 O CD 3 O Methoxy

LOUISVILLE.EDU  Introduction: Motivation & Goals  Theory o Hamiltonian o Intensity Formula & Selection Rules  “Experimental” Spectra  Spectral Analysis & Results o Molecular Constants o Geometry Determination  Conclusion Outline

LOUISVILLE.EDU Basis Set  - vibronic basis functions;  J - total angular momentum of the molecule;  P - projection of J onto the molecule-fixed z or c axis;  M - projection of J onto the space-fixed Z or “C” axis;  S = 1/2 - spin of electron;  Σ=±1/2 - projection of S onto the z or c axis;  =±1 - parity of the basis functions with respect to the σ zx reflection. y x z σ zx For cp:

LOUISVILLE.EDU Effective Hamiltonian H Q = Vibronic Degeneracy Lifting H rot = rotational H rot,corr = “spin uncoupling” 1,2 H cor = Coriolis Interaction H JT = Jahn-Teller Distortion 1.J.T. Hougen, J. Mol. Spect. 81, 73 (1980). 2.Y. Endo, S. Saito, and E. Hirota, J. Chem. Phys. 81, 122 (1984). Hougen Operator 1 -

LOUISVILLE.EDU Hamiltonian Elements

LOUISVILLE.EDU Transition Intensity Formula For transitions from the Σ=1/2 levels: For transitions from the Σ=-1/2 levels: 1.L. Yu, D.W. Cullin, J.M. Williamson, and T.A. Miller, J. Chem. Phys. 98, 2682 (1993). Nuclear Spin Statistics weights of rovibronic levels a : Vibronic Species 2A22A22A22A2 2B12B12B12B1 C5H4DC5H4DC5H4DC5H4D K a /K c b e/e or e/o o/e or o/o e/e or e/o o/e or o/o 5335 C 5 HD 4 K a /K c b e/e or o/o e/o or o/e e/e or o/o e/o or o/e 5445 a- K a and K c are the projections of the angular momentum N along inertial a and c axes, respectively b- The e and o indicate whether K a /K c is an even or odd integer Selection Rules:

LOUISVILLE.EDU “Experimental” Spectra Yu et al. (1993) Cold- 3K Hot- 10K ΔEΔE L. Yu, D.W. Cullin, J.M. Williamson, and T.A. Miller, J. Chem. Phys. 98, 2682 (1993).

LOUISVILLE.EDU Simulated Spectra: Asymmetric Top Model- C 5 H 4 D V. Stakhursky and T.A. Miller, 56 th International Symposium of Molecular Spectroscopy (The Ohio State University, Columbus Ohio, 2001). Hot- 10K Cold- 3K a-type b-type b-type b-type Simulation Simulation Experimental Experimental

LOUISVILLE.EDU Simulated Spectra: New Model V. Stakhursky and T.A. Miller, 56 th International Symposium of Molecular Spectroscopy (The Ohio State University, Columbus Ohio, 2001). C 5 HD 4 C5H4DC5H4DC5H4DC5H4D

LOUISVILLE.EDU Molecular Constants: One set of constants for both levels! C 5 H 5 (a) C5H4DC5H4DC5H4DC5H4D C 5 HD 4 C 5 D 5 (a) Ground State B zz (C) (65) (62) (B xx +B yy )/ (96) (84) (79) (132) (B xx -B yy )/ (111) (103) B zz ζ t (Cζ t ) (102) (651) (737) (165) h1h1h1h (27) (87) (86) (37) ΔEΔEΔEΔE (15) (15) ζtζtζtζt Excited State B zz (C) (59) (58) (58) (105) (B xx +B yy )/ (86) (71) (73) (126) (B xx -B yy )/ (7) (6) Te (1) (1) # transitions σ h 1 – Jahn-Teller distortion ΔE- Vibronic Degeneracy Lifting L. Yu, J.M. Williamson, and T.A. Miller, Chem. Phys. Lett. 162, 431 (1989). (a) L. Yu, J.M. Williamson, and T.A. Miller, Chem. Phys. Lett. 162, 431 (1989). Unit: GHz ζ t - Coriolis Constant

LOUISVILLE.EDU Rotational Constants & JT distortion constants (h 1 ) JT distortion constants (h 1 ) B xx, B yy, B zz – Rotational constants for the undistorted Geometry h 1 – Jahn-Teller distortion constant h 2 – second order Jahn-Teller distortion constant (zero for cp) Φ- angle of pseudorotation for the molecule in the moat around the CI Φ=0 Φ=πΦ=πΦ=πΦ=π 1. J.k.G. Watson, J. Mol. Spectros (1984)

LOUISVILLE.EDU Geometry Determination 2 B 1 (e x ) 2 E 1 ’’ 2 A 2 (e y ) C 1 -C 2 (Å) (8) R cc 0 (Å) (10) C 1 -C 2 (Å) (8) C 2 -C 3 (Å) (21) R CH (Å) (46) C 2 -C 3 (Å) (21) C 3 -C 4 (Å) (26) ΔR CC (Å) (26) C 3 -C 4 (Å) (26) C-H Bonds (Å) (46) C-C-C Bond Angles (deg) 108 C-H Bonds (Å) (46) Θ 3 (C 2 -C 3 -C 4 ) (deg) (58) H-C-C Bond Angles (°) 126 Θ 3 (C 2 -C 3 -C 4 ) (deg) (60) Θ (C1-C2-H2) (deg) (40) Θ (C1-C2-H2) (deg) (57) Θ (C2-C3-H3) (deg) (26) Θ (C2-C3-H3) (deg) (29) C1C1 C2C2 C3C3 C4C4 C5C5 H2H2 H3H3 H1H1 H5H5 H4H4 C1C1 C2C2 C3C3 C5C5 C4C4 H1H1 H2H2 H3H3 H4H4 H5H5 k=

LOUISVILLE.EDU Comparison with previous works This WorkExpt. Ref 1 Expt. Ref 2 Calc. Ref 3 Calc. Ref 4 R CC (10) (2)1.421 (1) ΔR CC (e x )0.021 (26)N/A (5)0.066 ΔR CC (e y ) (26)N/A (5) R CH (46)1.083 (1)1.073 (5)N/A1.072 References 1.L. Yu, J.M. Williamson, and T.A. Miller, Chem. Phys. Lett. 162, 431 (1989). 2.L. Yu, D.W. Cullin, J.M. Williamson, and T.A. Miller, J. Chem. Phys. 98, 2682 (1993). 3.M.J. Bearpark, M.A. Robb, and N. Yamaoto, Spectrochim. Acta A 55, 639 (1999). 4. B.E. Applegate, T.A. Miller, and T.A. Barckholtz, J. Chem. Phys. 114, 4855 (2001). Unit: Å (angst.)

LOUISVILLE.EDU   Previous experimental spectra of the two asymmetrically deuterated isotopomers of the cyclopentadienyl radical have been successfully simulated using a spectroscopic model that describes the two zero point levels of the ground electronic state using one set of molecular parameters.  The model reproduces the lifting of vibronic degeneracy and the Jahn-Teller distortion.  Based on the experimentally derived rotational constants and the Jahn-Teller constants, the undistorted and distorted geometries of the cyclopentadienyl radical have been determined, which can be used to benchmark quantum chemistry calculations. Conclusion

LOUISVILLE.EDU Advisor Dr. Jinjun Liu Group Members  Hui Liu  Dustin Cummings  Bokhodir S. Mamedov  Malika S. Rizmanova Collaborator Dr. Terry A. Miller Acknowledgements

LOUISVILLE.EDU C1C1 C2C2 C3C3 C5C5 C4C4 H1H1 H2H2 H3H3 H4H4 H5H5 Geometry Determination C1C1 C2C2 C3C3 C4C4 C5C5 H2H2 H3H3 H1H1 H5H5 H4H4 2 E 1 ’’ R cc 0 (Å) (10) R CH (Å) (46) ΔR (Å) (26) C-C-C Bond Angles (deg) 108 H-C-C Bond Angles (°) A 2 (e y ) C 1 -C 2 (Å) (8) C 2 -C 3 (Å) (21) C 3 -C 4 (Å) (26) C-H Bonds (Å) (46) Θ 3 (C 2 -C 3 -C 4 ) (deg) (60) Θ (C1-C2-H2) (deg) (57) Θ (C2-C3-H3) (deg) (29) 2 B 1 (e x ) C 1 -C 2 (Å) (8) C 2 -C 3 (Å) (21) C 3 -C 4 (Å) (26) C-H Bonds (Å) (46) Θ 3 (C 2 -C 3 -C 4 ) (deg) (58) Θ (C1-C2-H2) (deg) (40) Θ (C2-C3-H3) (deg) (26)