Study of Position Sensitive  E-E for Space Particle Telescope Pre-results of Geant4 simulation 张云龙,王文骁,李翠.

Slides:



Advertisements
Similar presentations
Accelerator Physics, JU, First Semester, (Saed Dababneh).
Advertisements

1 Proton detection with the R3B calorimeter, two layer solution IEM-CSIC sept report MINISTERIO DE EDUCACIÓN Y CIENCIA CONSEJO SUPERIOR DE INVESTIGACIONES.
Ion Beam Analysis techniques:
Rutherford Backscattering Spectrometry
Solving atomic calculations: Working with: – Elements – Isotopes – Ions – Atomic # – Atomic mass – Charge.
Radiant Energy  .
Carbon ion fragmentation study for medical applications Protons (hadrons in general) especially suitable for deep-sited tumors (brain, neck base, prostate)
Rutherford Backscattering Spectrometry
STEREO IMPACT Critical Design Review 2002 November 20,21,22 1 LET Performance Requirements Presenter: Richard Mewaldt
Particle Interactions
The Time-of-Flight system of the PAMELA experiment: in-flight performances. Rita Carbone INFN and University of Napoli RICAP ’07, Rome,
Components of the Atom Nucleus: Nuclear Forces:
Stopping Power The linear stopping power S for charged particles in a given absorber is simply defined as the differential energy loss for that particle.
Geant4: Electromagnetic Processes 2 V.Ivanchenko, BINP & CERN
Centre de Toulouse Radiation interaction with matter 1.
By Chris Chase.  Function:  Function Notation: Example of evaluating a function for an input or output y=2x+3.
Space Instrumentation. Definition How do we measure these particles? h p+p+ e-e- Device Signal Source.
CJ Barton Department of Physics INTAG Meeting – GSI – May 2007 Large Acceptance Bragg Detector at ISOLDE.
Physics Modern Lab1 Electromagnetic interactions Energy loss due to collisions –An important fact: electron mass = 511 keV /c2, proton mass = 940.
Normalisation modelling sources Geant4 tutorial Paris, 4-8 June 2007 Giovanni Santin ESA / ESTEC Rhea System SA.
Determining the NUMBER of Protons Electrons and Neutrons in Atoms, Ions, and Isotopes.
Calibration of the new Particle Identification Detector (PID) Tom Jude, Derek Glazier, Dan Watts.
August, 7ILC1 Kudzanayi Munetsi-Mugomba supervised by Dr. Caroline Milstene Software Infrastructure for the Charged Particles Reconstruction at the International.
2. RUTHERFORD BACKSCATTERING SPECTROMETRY Basic Principles.
1 dE/dx  Let’s next turn our attention to how charged particles lose energy in matter  To start with we’ll consider only heavy charged particles like.
1 Calorimeter in G4MICE Berkeley 10 Feb 2005 Rikard Sandström Geneva University.
Electrons Electrons lose energy primarily through ionization and radiation Bhabha (e+e-→e+e-) and Moller (e-e-→e-e-) scattering also contribute When the.
Simulation of GOSSIP/GridPix Nominal Detector, and GOSSIP in ATLAS.
Section 19.1 Radioactivity 1.To learn the types of radioactive decay 2.To learn to write nuclear equations for radioactive decay 3.To learn how one element.
Determining Radiation Intensity
Workshop On Nuclear Data for Advanced Reactor Technologies, ICTP , A. Borella1 Monte Carlo methods.
CaTS and Dual Readout. CaTS – Calorimeter and Tracker Simulation Describe detector in gdml file (xml like) Define.
Rutherford Backscattering Spectrometry (RBS)
We are investigating the dependence of efficiency of diamond detector samples on accumulated radiation dose. We have Sr 90  -source of known activity.
What is radioactivity? lecture 9.1 Gamma ray bursts from a star collapsing into a Black Hole.
Isotopic Abundance Pages Thinking question Why are there decimal places for atomic masses on the periodic table if protons and neutrons have amu.
Pedro Brogueira 1, Patrícia Gonçalves 2, Ana Keating 2, Dalmiro Maia 3, Mário Pimenta 2, Bernardo Tomé 2 1 IST, Instituto Superior Técnico, 2 LIP, Laboratório.
Average Atomic Mass Practice
Gruppo di Napoli A. Aleksandrov, G. De Lellis, A. Di Crescenzo, M. Fioranelli, A. Iacomino, A. Lauria, J. Lotti, M.C. Montesi, V. Tioukov 1. Detector structure.
PHYS 3446 – Lecture #13 Energy Deposition in Media
instrumentation examples
Mass of constituent parts of the nucleus:
Fast neutron flux measurement in CJPL
12th Geant4 Space Users Workshop
LET Performance Requirements Presenter: Richard Mewaldt
Objectives To learn the types of radioactive decay
Irregularities Of Mass In The Periodic Table
Dose Equivilant Rad Pro III NUCP 2331.
GAMMA-400 performance a,bLeonov A., a,bGalper A., bKheymits M., aSuchkov S., aTopchiev N., bYurkin Y. & bZverev V. aLebedev Physical Institute of the Russian.
of secondary light ion beams
of secondary light ion beams
Isotopes 436 Objectives: 5.2 Identify the advantages and disadvantages of using isotopes in industry, medical science, basic research, and in the environment.
Chapter 4 The Nuclear Atom.
Some atoms for Ions IONS IONS
Atomic Particles Particle Charge Mass # Location Electron -1
Geometry of experimental setup for studies of inverse kinematics reactions with ROOT Students*: Dumitru Irina, Giubega Lavinia-Elena, Lica Razvan, Olacel.
Atomic Structure.
1. Introduction Secondary Heavy charged particle (fragment) production
Simulation study for Forward Calorimeter in LHC-ALICE experiment
CRaTER Science Requirements
Unit 6, Lesson 2: Structure of the Atom
The Hadrontherapy Geant4 advanced example
Nuclear Physics 2 Radiation Properties Saturday, 16 February 2019
Mini Tower Preliminary Results
PHYS 3446 – Lecture #14 Wednesday,March 7, 2012 Dr. Brandt
PHYS 3446, Spring 2012 Andrew Brandt
Particles going through matter
PHYS 3446 – Lecture #13 Energy Deposition in Media
Objectives To learn the types of radioactive decay
Status of the cross section analysis in e! e
Presentation transcript:

Study of Position Sensitive  E-E for Space Particle Telescope Pre-results of Geant4 simulation 张云龙,王文骁,李翠

Motivation Study of space science is in need of information of space particle(nuclide/ion). Important parameters: energy spectrum of particle and particle flux. First of all, identify particles. (Reconstruct Z and M in simulation.)

Particle identification Bethe-Bloch formula: Energy loss of incident particle could be described by Bethe-Bloch formula. Due to ionization, particle will deposit energy in detector, and detector can output signal. The value of output signal in detector relevant to the incident particle’s charge, kinetic energy and so on. With measured detector’s signal, the particle’s charge and mass could be identified.

Telescope model Elements’ thickness: First: 50  m Second: 192  m Third: 248  m BGO: 63mm  63mm  40mm BGO Silicon detector z x y

H1H2H3 /gps/source/clear /gps/source/add 1 /gps/particle proton /gps/pos/type Point /gps/pos/centre cm /gps/ang/type iso /gps/ang/mintheta 0.00 deg /gps/ang/maxtheta deg /gps/ene/type Lin /gps/ene/min 0. MeV /gps/ene/max 200. MeV /gps/ene/gradient 0. /gps/ene/intercept 1. /run/beamOn /gps/source/clear /gps/source/add 1 /gps/particle ion /gps/ion /gps/pos/type Point /gps/pos/centre cm /gps/ang/type iso /gps/ang/mintheta 0.00 deg /gps/ang/maxtheta deg /gps/ene/type Lin /gps/ene/min 0. MeV /gps/ene/max 200. MeV /gps/ene/gradient 0. /gps/ene/intercept 1. /run/beamOn /gps/source/clear /gps/source/add 1 /gps/particle ion /gps/ion /gps/pos/type Point /gps/pos/centre cm /gps/ang/type iso /gps/ang/mintheta 0.00 deg /gps/ang/maxtheta deg /gps/ene/type Lin /gps/ene/min 0. MeV /gps/ene/max 200. MeV /gps/ene/gradient 0. /gps/ene/intercept 1. /run/beamOn 20000

Energy deposit in each Si Layer and BGO H1

Energy deposit in each Si Layer and BGO H2

Energy deposit in each Si Layer and BGO H3

 E VS Kinetic energy

He3He4 /gps/source/clear /gps/source/add 1 /gps/particle alpha #/gps/ion /gps/pos/type Point /gps/pos/centre cm /gps/ang/type iso /gps/ang/mintheta 0.00 deg /gps/ang/maxtheta deg /gps/ene/type Lin /gps/ene/min 0. MeV /gps/ene/max 400. MeV /gps/ene/gradient 0. /gps/ene/intercept 1. /run/beamOn /gps/source/clear /gps/source/add 1 /gps/particle ion /gps/ion /gps/pos/type Point /gps/pos/centre cm /gps/ang/type iso /gps/ang/mintheta 0.00 deg /gps/ang/maxtheta deg /gps/ene/type Lin /gps/ene/min 0. MeV /gps/ene/max 400. MeV /gps/ene/gradient 0. /gps/ene/intercept 1. /run/beamOn 20000

Energy deposit in each Si Layer and BGO He3

Energy deposit in each Si Layer and BGO He4

 E VS Kinetic energy

Li6Li7 /gps/source/clear /gps/source/add 1 /gps/particle ion /gps/ion /gps/pos/type Point /gps/pos/centre cm /gps/ang/type iso /gps/ang/mintheta 0.00 deg /gps/ang/maxtheta 0.01 deg /gps/ene/type Lin /gps/ene/min 0. MeV /gps/ene/max 400. MeV /gps/ene/gradient 0. /gps/ene/intercept 1. /run/beamOn /gps/source/clear /gps/source/add 1 /gps/particle ion /gps/ion /gps/pos/type Point /gps/pos/centre cm /gps/ang/type iso /gps/ang/mintheta 0.00 deg /gps/ang/maxtheta 0.01 deg /gps/ene/type Lin /gps/ene/min 0. MeV /gps/ene/max 500. MeV /gps/ene/gradient 0. /gps/ene/intercept 1. /run/beamOn 10000

Energy deposit in each Si Layer and BGO Li6

Energy deposit in each Si Layer and BGO Li7

 E VS Kinetic energy

Be7Be9Be10

B10B11

C12C13C14

Reconstruct Z NUCLEAR INSTRUMENTS AND METHODS 145(1977) The final calculated particle identification value “PI”, approximately (AZ 2 ) 1/3

PI calculation T1: thickness of  E detector E1:  E E2: total energy

Reconstruct Z H1 H2H3 He3He4 Li6 Li7 Be B C

Reconstruct M Once the charge (Z) has been identified, the mass M of the specific isotope can be reconstructed by means of the equation: A precise evaluation of such parameters a and b for each atomic species has been obtained by a fit of the following expression: R: the measured range E: kinetic energy a: is a constant of the medium b:  [1.5, 1.8] NUCLEAR INSTRUMENTS AND METHODS IN PHYSICS RESEARCH A 424(1999)

Measured range VS Kinetic energy proton alpha Li Be

Measured range VS Kinetic energy BC

Values of a&b

mass H1H2 H3 He3 He4

mass Li6Li7 Be7Be9 Be10 B10 B11 C12C13 C14