Wireless and Mobile Networks EECS 489 Computer Networks Z. Morley Mao Monday March 19, 2007 Acknowledgement:

Slides:



Advertisements
Similar presentations
6: Wireless and Mobile Networks6-1 Chapter outline Mobility r 6.5 Principles: addressing and routing to mobile users r 6.6 Mobile IP r 6.7 Handling.
Advertisements

1 Wireless and Mobile Networks Part 2 November 25, 2008 Department of Electrical and Computer Engineering University of Western Ontario ECE 436a Networking:
Wireless, Mobile Networks – Mobility. Wireless, Mobile Networks6-2 Mobility: Vocabulary home network: permanent “home” of mobile (e.g., /24)
Chapter 6 Wireless and Mobile Networks Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 A note on.
Cellular and Mobile Wireless Networks Computer Networks.
Cellular and Mobile Wireless Networks (part 2) Advanced Computer Networks.
Chapter 6 Wireless and Mobile Networks
What we will cover… Home Networking: Network Address Translation (NAT) Mobile Routing.
6: Wireless and Mobile Networks6-1 EEE 459/591 Communication Networks Spring 2005 Prof. M. Reisslein Chapter 6 Wireless and Mobile Networks Textbook: Computer.
1 Wireless Networks ECS 152A Acknowledgement: slides from Kurose and Ross.
6: Wireless and Mobile Networks6-1 Chapter 6 Wireless and Mobile Networks Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition.
Wireless and Mobility 6: Wireless and Mobile Networks.
20 - Mobility 6: Wireless and Mobile Networks.
Wireless and Mobile Networks1. 2 Background: r # wireless (mobile) phone subscribers now exceeds # wired phone subscribers! r computer nets: laptops,
1 Chapter 6: Wireless and Mobile Networks Objectives  Introduction  Wireless links, characteristics  CDMA  IEEE wireless LANs (“wi-fi”)  Cellular.
ICMP: Internet Control Message Protocol used by hosts, routers, gateways to communication network-level information –error reporting: unreachable host,
1 Elements of a wireless network network infrastructure wireless hosts r laptop, PDA, IP phone r run applications r may be stationary (non- mobile) or.
Gordon College Adapted from Computer Networking: A Top Down Approach
6: Wireless and Mobile Networks6-1 Data Communication and Networks Lecture 5 Wireless Networks October 5, 2006.
Network Layer4-1 Router Architecture Overview Two key router functions: r run routing algorithms/protocol (RIP, OSPF, BGP) r switching datagrams from incoming.
6/2/05CS118/Spring051 Chapter 6: Wireless and Mobile Networks r Cover the following sections only:  6.3: wireless LANs  6.5: mobility management:
Chapter 6 Wireless and Mobile Networks Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 A note on.
Cellular and Mobile Wireless Networks (part 2) Advanced Computer Networks D12.
12-1 Last time □ BGP policy □ Broadcast / multicast routing ♦ Spanning trees Source-based, group-shared, center-based ♦ Reverse path forwarding, pruning.
Wireless and Mobile Networks EECS 489 Computer Networks Z. Morley Mao Wednesday March 14, 2007 Acknowledgement:
6: Wireless and Mobile Networks6-1 Chapter 6: Wireless and Mobile Networks Background: r # wireless (mobile) phone subscribers now exceeds # wired phone.
1 Wireless and Mobile Networks EECS 489 Computer Networks Z. Morley Mao Monday March 19, 2007 Acknowledgement:
6: Wireless and Mobile Networks6-1 Elements of a wireless network network infrastructure wireless hosts r laptop, PDA, IP phone r run applications r may.
CHAPTER 6. Wireless, Mobile Networks6-2 Chapter 6: Wireless and Mobile Networks Background: # wireless (mobile) phone subscribers now exceeds # wired.
13-1 Last time □ Router internals ♦ Input ports, switching fabric, output ports ♦ Switching via memory, bus, crossbar ♦ Queueing, head-of-line blocking.
Lecture 4 Mobility Overview.
6: Wireless and Mobile Networks6-1 Chapter 6 Wireless and Mobile Networks.
6-1 Chapter 6 outline Introduction Wireless r Wireless links, characteristics r IEEE wireless LANs (“wi-fi”) Mobility r Principles: addressing and.
Adapted from: Computer Networking, Kurose/Ross 1DT066 Distributed Information Systems Chapter 6 Wireless, WiFi and mobility.
Mobile IP Overview and Discussion. 2 Spectrum of Mobility – from network perspective no mobility high mobility mobile user, using same access point mobile.
Wireless, Mobile Networks6-1 Chapter 6 outline 6.1 Introduction Wireless 6.2 Wireless links, characteristics  CDMA 6.3 IEEE wireless LANs (“Wi-Fi”)
Chapter 6: Wireless and Mobile Networks Background: r # wireless (mobile) phone subscribers now exceeds # wired phone subscribers! r computer nets: laptops,
Mobile IP Most of the slides borrowed from Prof. Sridhar Iyer
Lecture 8 Mobility CPE 401/601 Computer Network Systems slides are modified from Jim Kurose & Keith Ross All material copyright J.F Kurose and.
Chapter 6 Wireless and Mobile Networks Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 Wireless,
Cellular and Mobile Wireless Networks Internet of Things Fall 2015.
Location management. Mobile Switching Center Public telephone network, and Internet Mobile Switching Center Components of cellular network architecture.
6: Wireless and Mobile Networks6-1 Chapter 6 Wireless and Mobile Networks Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition.
Sharif University of Technology 6-1 Chapter 6 Wireless and Mobile Networks Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition.
Network Layer4-1 Today Collect homework New homework: Ch4 #16,19,21-24,26,27,29,31 (half graded, as usual) Due Wednesday Oct 15 in class Final programming.
1 Quick Review on Data Link Layer – Part 2 Jonathan C.L. Liu, Ph.D. Department of Computer, Information Science and Engineering (CISE), University of Florida.
OVERVIEW Lecture 3 Wireless Networks (2). Lecture 3: Wireless Networks 2 CDMA: two-sender interference.
6: Wireless and Mobile Networks6-1 Chapter 6 outline 6.1 Introduction Wireless r 6.2 Wireless links, characteristics m CDMA r 6.3 IEEE wireless.
6: Wireless and Mobile Networks 6-1 Chapter 6 Wireless and Mobile Networks Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition.
6: Wireless and Mobile Networks6-1 Chapter 6 Wireless and Mobile Networks Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition.
6: Wireless and Mobile Networks6-1 Chapter 6 Wireless and Mobile Networks Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition.
6: Wireless and Mobile Networks6-1 Chapter 6 Wireless and Mobile Networks Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition.
Accommodating mobility with direct routing
6: Wireless and Mobile Networks6-1 Chapter 6 Wireless and Mobile Networks Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition.
Mobility CPE 401/601 Computer Network Systems slides are modified from Jim Kurose & Keith Ross All material copyright J.F Kurose and K.W. Ross,
DMET 602: Networks and Media Lab Amr El Mougy Yasmeen EssamAlaa Tarek.
6: Wireless and Mobile Networks 6-1 Chapter 6 Wireless and Mobile Networks Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition.
6: Wireless and Mobile Networks 6-1 Chapter 6 Mobile IP A note on the use of these ppt slides: We’re making these slides freely available to all (faculty,
6: Wireless and Mobile Networks6-1 Chapter 6 outline 6.1 Introduction Wireless r 6.2 Wireless links, characteristics m CDMA r 6.3 IEEE wireless.
6: Wireless and Mobile Networks6-1 Chapter 6: Wireless and Mobile Networks Background: r # wireless (mobile) phone subscribers now exceeds # wired phone.
Prof. Younghee Lee 1 1 Computer Networks u Lecture 11: Mobility Prof. Younghee Lee * Some part of this teaching materials are prepared referencing the.
6: Wireless and Mobile Networks6-1 Chapter 6 Wireless and Mobile Networks Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition.
6: Wireless and Mobile Networks6-1 Chapter 6 Wireless and Mobile Networks.
Chapter 6 Wireless and Mobile Networks
DMET 602: Networks and Media Lab
CPE 401/601 Computer Network Systems
Cellular and Mobile Wireless Networks
DMET 602: Networks and Media Lab
Cellular and Mobile Wireless Networks
Presentation transcript:

Wireless and Mobile Networks EECS 489 Computer Networks Z. Morley Mao Monday March 19, 2007 Acknowledgement: Some slides taken from Kurose&Ross

frame control duration address 1 address 2 address 4 address 3 payloadCRC seq control frame: addressing Address 2: MAC address of wireless host or AP transmitting this frame Address 1: MAC address of wireless host or AP to receive this frame Address 3: MAC address of router interface to which AP is attached Address 3: used only in ad hoc mode

Internet router AP H1 R1 AP MAC addr H1 MAC addr R1 MAC addr address 1 address 2 address frame R1 MAC addr AP MAC addr dest. address source address frame frame: addressing router R2

frame control duration address 1 address 2 address 4 address 3 payloadCRC seq control Type From AP Subtype To AP More frag WEP More data Power mgt RetryRsvd Protocol version frame: more duration of reserved transmission time (RTS/CTS) frame seq # (for reliable ARQ) frame type (RTS, CTS, ACK, data)

hub or switch AP 2 AP 1 H1 BBS 2 BBS : mobility within same subnet router r H1 remains in same IP subnet: IP address can remain same r switch: which AP is associated with H1? m self-learning (Ch. 5): switch will see frame from H1 and “remember” which switch port can be used to reach H1

M radius of coverage S S S P P P P M S Master device Slave device Parked device (inactive) P : personal area network r less than 10 m diameter r replacement for cables (mouse, keyboard, headphones) r ad hoc: no infrastructure r master/slaves: m slaves request permission to send (to master) m master grants requests r : evolved from Bluetooth specification m GHz radio band m up to 721 kbps

Mobile Switching Center Public telephone network, and Internet Mobile Switching Center Components of cellular network architecture  connects cells to wide area net  manages call setup (more later!)  handles mobility (more later!) MSC  covers geographical region  base station (BS) analogous to AP  mobile users attach to network through BS  air-interface: physical and link layer protocol between mobile and BS cell wired network

Cellular networks: the first hop Two techniques for sharing mobile-to-BS radio spectrum r combined FDMA/TDMA: divide spectrum in frequency channels, divide each channel into time slots r CDMA: code division multiple access frequency bands time slots

Cellular standards: brief survey 2G systems: voice channels r IS-136 TDMA: combined FDMA/TDMA (north america) r GSM (global system for mobile communications): combined FDMA/TDMA m most widely deployed r IS-95 CDMA: code division multiple access IS-136 GSM IS-95 GPRS EDGE CDMA-2000 UMTS TDMA/FDMA Don’t drown in a bowl of alphabet soup: use this for reference only

Cellular standards: brief survey 2.5 G systems: voice and data channels r for those who can’t wait for 3G service: 2G extensions r general packet radio service (GPRS) m evolved from GSM m data sent on multiple channels (if available) r enhanced data rates for global evolution (EDGE) m also evolved from GSM, using enhanced modulation m Date rates up to 384K r CDMA-2000 (phase 1) m data rates up to 144K m evolved from IS-95

Cellular standards: brief survey 3G systems: voice/data r Universal Mobile Telecommunications Service (UMTS) m GSM next step, but using CDMA r CDMA-2000 ….. more (and more interesting) cellular topics due to mobility (stay tuned for details)

What is mobility? r spectrum of mobility, from the network perspective: no mobility high mobility mobile wireless user, using same access point mobile user, passing through multiple access point while maintaining ongoing connections ( like cell phone) mobile user, connecting/ disconnecting from network using DHCP.

Mobility: Vocabulary home network: permanent “home” of mobile (e.g., /24) Permanent address: address in home network, can always be used to reach mobile e.g., home agent: entity that will perform mobility functions on behalf of mobile, when mobile is remote wide area network correspondent

Mobility: more vocabulary Care-of-address: address in visited network. (e.g., 79, ) wide area network visited network: network in which mobile currently resides (e.g., /24) Permanent address: remains constant ( e.g., ) home agent: entity in visited network that performs mobility functions on behalf of mobile. correspondent: wants to communicate with mobile

How do you contact a mobile friend: r search all phone books? r call her parents? r expect her to let you know where he/she is? I wonder where Alice moved to? Consider friend frequently changing addresses, how do you find her?

Mobility: approaches r Let routing handle it: routers advertise permanent address of mobile-nodes-in-residence via usual routing table exchange. m routing tables indicate where each mobile located m no changes to end-systems r Let end-systems handle it: m indirect routing: communication from correspondent to mobile goes through home agent, then forwarded to remote m direct routing: correspondent gets foreign address of mobile, sends directly to mobile

Mobility: approaches r Let routing handle it: routers advertise permanent address of mobile-nodes-in-residence via usual routing table exchange. m routing tables indicate where each mobile located m no changes to end-systems r let end-systems handle it: m indirect routing: communication from correspondent to mobile goes through home agent, then forwarded to remote m direct routing: correspondent gets foreign address of mobile, sends directly to mobile not scalable to millions of mobiles

Mobility: registration End result: r Foreign agent knows about mobile r Home agent knows location of mobile wide area network home network visited network 1 mobile contacts foreign agent on entering visited network 2 foreign agent contacts home agent home: “this mobile is resident in my network”

Mobility via Indirect Routing wide area network home network visited network correspondent addresses packets using home address of mobile home agent intercepts packets, forwards to foreign agent foreign agent receives packets, forwards to mobile mobile replies directly to correspondent

Indirect Routing: comments r Mobile uses two addresses: m permanent address: used by correspondent (hence mobile location is transparent to correspondent) m care-of-address: used by home agent to forward datagrams to mobile r foreign agent functions may be done by mobile itself r triangle routing: correspondent-home-network- mobile m inefficient when correspondent, mobile are in same network

Indirect Routing: moving between networks r suppose mobile user moves to another network m registers with new foreign agent m new foreign agent registers with home agent m home agent update care-of-address for mobile m packets continue to be forwarded to mobile (but with new care-of-address) r mobility, changing foreign networks transparent: ongoing connections can be maintained!

Mobility via Direct Routing wide area network home network visited network correspondent requests, receives foreign address of mobile correspondent forwards to foreign agent foreign agent receives packets, forwards to mobile mobile replies directly to correspondent 3

Mobility via Direct Routing: comments r overcome triangle routing problem r non-transparent to correspondent: correspondent must get care-of-address from home agent m what if mobile changes visited network?

wide area network 1 foreign net visited at session start anchor foreign agent 2 4 new foreign agent 3 5 correspondent agent correspondent new foreign network Accommodating mobility with direct routing r anchor foreign agent: FA in first visited network r data always routed first to anchor FA r when mobile moves: new FA arranges to have data forwarded from old FA (chaining)

Mobile IP r RFC 3220 r has many features we’ve seen: m home agents, foreign agents, foreign-agent registration, care-of-addresses, encapsulation (packet-within-a-packet) r three components to standard: m indirect routing of datagrams m agent discovery m registration with home agent

Mobile IP: indirect routing Permanent address: Care-of address: dest: packet sent by correspondent dest: dest: packet sent by home agent to foreign agent: a packet within a packet dest: foreign-agent-to-mobile packet

Mobile IP: agent discovery r agent advertisement: foreign/home agents advertise service by broadcasting ICMP messages (typefield = 9) R bit: registration required H,F bits: home and/or foreign agent

Mobile IP: registration example

Components of cellular network architecture correspondent MSC wired public telephone network different cellular networks, operated by different providers recall:

Handling mobility in cellular networks r home network: network of cellular provider you subscribe to (e.g., Sprint PCS, Verizon) m home location register (HLR): database in home network containing permanent cell phone #, profile information (services, preferences, billing), information about current location (could be in another network) r visited network: network in which mobile currently resides m visitor location register (VLR): database with entry for each user currently in network m could be home network

Public switched telephone network mobile user home Mobile Switching Center HLR home network visited network correspondent Mobile Switching Center VLR GSM: indirect routing to mobile 1 call routed to home network 2 home MSC consults HLR, gets roaming number of mobile in visited network 3 home MSC sets up 2 nd leg of call to MSC in visited network 4 MSC in visited network completes call through base station to mobile

Mobile Switching Center VLR old BS new BS old routing new routing GSM: handoff with common MSC r Handoff goal: route call via new base station (without interruption) r reasons for handoff: m stronger signal to/from new BS (continuing connectivity, less battery drain) m load balance: free up channel in current BS m GSM doesn’t mandate why to perform handoff (policy), only how (mechanism) r handoff initiated by old BS

Mobile Switching Center VLR old BS GSM: handoff with common MSC new BS 1. old BS informs MSC of impending handoff, provides list of 1 + new BSs 2. MSC sets up path (allocates resources) to new BS 3. new BS allocates radio channel for use by mobile 4. new BS signals MSC, old BS: ready 5. old BS tells mobile: perform handoff to new BS 6. mobile, new BS signal to activate new channel 7. mobile signals via new BS to MSC: handoff complete. MSC reroutes call 8 MSC-old-BS resources released

home network Home MSC PSTN correspondent MSC anchor MSC MSC (a) before handoff GSM: handoff between MSCs r anchor MSC: first MSC visited during call m call remains routed through anchor MSC r new MSCs add on to end of MSC chain as mobile moves to new MSC r IS-41 allows optional path minimization step to shorten multi-MSC chain

home network Home MSC PSTN correspondent MSC anchor MSC MSC (b) after handoff GSM: handoff between MSCs r anchor MSC: first MSC visited during cal m call remains routed through anchor MSC r new MSCs add on to end of MSC chain as mobile moves to new MSC r IS-41 allows optional path minimization step to shorten multi-MSC chain

Mobility: GSM versus Mobile IP GSM elementComment on GSM elementMobile IP element Home systemNetwork to which the mobile user’s permanent phone number belongs Home network Gateway Mobile Switching Center, or “home MSC”. Home Location Register (HLR) Home MSC: point of contact to obtain routable address of mobile user. HLR: database in home system containing permanent phone number, profile information, current location of mobile user, subscription information Home agent Visited SystemNetwork other than home system where mobile user is currently residing Visited network Visited Mobile services Switching Center. Visitor Location Record (VLR) Visited MSC: responsible for setting up calls to/from mobile nodes in cells associated with MSC. VLR: temporary database entry in visited system, containing subscription information for each visiting mobile user Foreign agent Mobile Station Roaming Number (MSRN), or “roaming number” Routable address for telephone call segment between home MSC and visited MSC, visible to neither the mobile nor the correspondent. Care-of- address

Wireless, mobility: impact on higher layer protocols r logically, impact should be minimal … m best effort service model remains unchanged m TCP and UDP can (and do) run over wireless, mobile r … but performance-wise: m packet loss/delay due to bit-errors (discarded packets, delays for link-layer retransmissions), and handoff m TCP interprets loss as congestion, will decrease congestion window un-necessarily m delay impairments for real-time traffic m limited bandwidth of wireless links

Chapter 6 Summary Wireless r wireless links: m capacity, distance m channel impairments m CDMA r IEEE (“wi-fi”) m CSMA/CA reflects wireless channel characteristics r cellular access m architecture m standards (e.g., GSM, CDMA-2000, UMTS) Mobility r principles: addressing, routing to mobile users m home, visited networks m direct, indirect routing m care-of-addresses r case studies m mobile IP m mobility in GSM r impact on higher-layer protocols