8/13/2004 Stefan Ballmer, MIT / LIGO Hanford 1 Length and angular control loops in LIGO Stefan Ballmer Massachusetts Institute of Technology LIGO Hanford.

Slides:



Advertisements
Similar presentations
Gravitational Wave Astronomy Dr. Giles Hammond Institute for Gravitational Research SUPA, University of Glasgow Universität Jena, August 2010.
Advertisements

19. October 2004 A. Freise Automatic Alignment using the Anderson Technique A. Freise European Gravitational Observatory Roma
Hiro Yamamoto LLO April 3, 2014 LIGO-G Core Optics related loss hierarchy of aLIGO Hiro Yamamoto LIGO/Caltech Introduction Loss related to geometry.
Calibration of the gravitational wave signal in the LIGO detectors Gabriela Gonzalez (LSU), Mike Landry (LIGO-LHO), Patrick Sutton (PSU) with the calibration.
Spring LSC 2001 LIGO-G W E2 Amplitude Calibration of the Hanford Recombined 2km IFO Michael Landry, LIGO Hanford Observatory Luca Matone, Benoit.
Locking improvements after the end of VSR1 Gabriele Vajente for the Locking Group 14 th ILIAS WG1 meeting Cascina – March 6 th 2008.
LIGO Interferometer Crash Course of Scimons
LIGO NSF review, 11/10/05 1 AdLIGO Optical configuration and control Nov 10, 2005 Alan Weinstein for AdLIGO Interferometer Sensing and Control (ISC) and.
LIGO-G W Proposed LHO Commissioning Activities in May 02 Fred Raab 29 Apr 02.
Angular Noise in a Suspended Interferometer with DC Readout Royal Reinecke Co-Mentors: Alan Weinstein and Rana Adhikari.
LIGO-G W Where Did the LSC Signals Come From? Fred Raab 27 June 02.
Laser Interferometer Gravitational-wave Observatory1 Characterization of LIGO Input Optics University of Florida Thomas Delker Guido Mueller Malik Rakhmanov.
LIGO- G060XXX-00-R E2E meeting, September How to design feedback filters? E2E meeting September 27, 2006 Osamu Miyakawa, Caltech.
Virgo Control Noise Reduction
LIGO-G Z LIGO Commissioning Report LSC Meeting, Hanover August 19, 2003 Peter Fritschel, MIT.
Interferometer Control Matt Evans …talk mostly taken from…
LIGO-G W Commissioning and Performance of the LIGO Interferometers Reported on behalf of LIGO colleagues by Fred Raab, LIGO Hanford Observatory.
Amaldi conference, June Lock acquisition scheme for the Advanced LIGO optical configuration Amaldi conference June24, 2005 O. Miyakawa, Caltech.
Takanori Sekiguchi External Review Alignment control servo for type-B/type-Bp (OpLev/WFS) 1 T. Sekiguchi.
Displacement calibration techniques for the LIGO detectors Evan Goetz (University of Michigan)‏ for the LIGO Scientific Collaboration April 2008 APS meeting.
LIGO-G D The LIGO-I Gravitational-wave Detectors Stan Whitcomb CaJAGWR Seminar February 16, 2001.
LIGO- G D The LIGO Instruments Stan Whitcomb NSB Meeting LIGO Livingston Observatory 4 February 2004.
G D LSC Changes in Preparation of High Power Operations Commissioning Meeting, May 5, 2003 Peter Fritschel, Daniel Sigg, Matt Evans.
LIGO- G R Amaldi7 July 14 th, 2007 R. Ward, Caltech 1 DC Readout Experiment at the Caltech 40m Laboratory Robert Ward Caltech Amaldi 7 July 14.
Matt Evans, LSC March 2003 (G E)1 Lock Acquisition in LIGO  Who am I? »Matt Evans »Caltech graduate  What is Lock Acquisition? »The process.
LIGO-G D Commissioning, Part II PAC 12, June 2002 Peter Fritschel, LIGO MIT.
LSC-March  LIGO End to End simulation  Lock acquisition design »How to increase the threshold velocity under realistic condition »Hanford 2k simulation.
G D Commissioning Progress and Plans Hanford Observatory LSC Meeting, March 21, 2005 Stefan Ballmer.
1 The Virgo noise budget Romain Gouaty For the Virgo collaboration GWADW 2006, Isola d’Elba.
08/24/2004 Stefan Ballmer, MIT / LIGO Hanford G I 1 Hanford 4km Recent improvements and currently limiting noise sources Stefan Ballmer Massachusetts.
Advanced LIGO Simulation, 6/1/06 Elba G E 1 ✦ LIGO I experience ✦ FP cavity : LIGO I vs AdvLIGO ✦ Simulation tools ✦ Time domain model Advanced.
Calibration in the Front End Controls Craig Cahillane LIGO Caltech SURF 2013 Mentors: Alan Weinstein, Jamie Rollins Presentation to Calibration Group 8/21/2013.
LIGO-G D 1 Status of Detector Commissioning LSC Meeting, March 2001 Nergis Mavalvala California Institute of Technology.
Modeling the Input Optics with e2e T. Findley, S. Yoshida, D. Dubois, N. Jamal, and R. Dodda Southeastern Louisiana University LIGO-G D.
Modeling of the Effects of Beam Fluctuations from LIGO’s Input Optics Nafis Jamal Shivanand Sanichiro Yoshida Biplab Bhawal LSC Conference Aug ’05 LIGO-G Z.
8/13/2004 Stefan Ballmer, MIT / LIGO Hanford G I 1 Thermal Compensation System Servo and required heating for H1 Stefan Ballmer Massachusetts.
TCS and IFO Properties Dave Ottaway For a lot of people !!!!!! LIGO Lab Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of.
LSC Meeting: 3/14/01Inspiral Upper Limit - Detector Characterization 1 Inspiral Upper Limit: Detector Characterization Needs Nelson Christensen Carleton.
International Gravitational Wave Network 11/9/2008 Building an Stefan Ballmer, for the LIGO / VIRGO Scientific Collaboration LIGO G
LSC Meeting at LHO LIGO-G E 1August. 21, 2002 SimLIGO : A New LIGO Simulation Package 1. e2e : overview 2. SimLIGO 3. software, documentations.
1 Locking in Virgo Matteo Barsuglia ILIAS, Cascina, July 7 th 2004.
The Effect of Transverse Shifts on the LIGO Interferometer Doug Fettig - Oregon State University Mentor: Biplab Bhawal.
LIGO-G Z March 2007, LSC meeting, Osamu Miyakawa 1 Osamu Miyakawa Hiroaki Yamamoto March 21, 2006 LSC meeting Modeling of AdLIGO arm lock acquisition.
LIGO-G D Online Digital Signal Processing NSF Review, October 23, 2002 Daniel Sigg, LIGO Hanford Observatory.
Monica VarvellaIEEE - GW Workshop Roma, October 21, M.Varvella Virgo LAL Orsay / LIGO CalTech Time-domain model for AdvLIGO Interferometer Gravitational.
LIGO Livingston Observatory Commissioning Status and Proposed Commissioning Activities Prior to S1 Mark Coles May 13, 2002.
ALIGO 0.45 Gpc 2014 iLIGO 35 Mpc 2007 Future Range to Neutron Star Coalescence Better Seismic Isolation Increased Laser Power and Signal Recycling Reduced.
LIGO-G D Commissioning P Fritschel LIGO NSF review, 23 October 2002 M.I.T.
Testing Advanced LIGO length sensing and control scheme at the Caltech 40m interferometer. at the Caltech 40m interferometer. Yoichi Aso*, Rana Adhikari,
Main Interferometer Subsystem
Calibration and the status of the photon calibrators Evan Goetz University of Michigan with Peter Kalmus (Columbia U.) & Rick Savage (LHO) 17 October 2006.
Time domain simulation for a FP cavity with AdLIGO parameters on E2E
LIGO Commissioning June 10, 2002
Type-A SAS Local Control Simulation (Current Status)
Daniel Sigg, Commissioning Meeting, 11/11/16
Aspen January, 2005 Nergis Mavalvala
Summary of iKAGRA Test Run Mar 25-31, 2016
Summary of iKAGRA Test Run Apr 11-25, 2016
Time domain simulation for a FP cavity with AdLIGO parameters on E2E
Dennis Coyne LIGO Laboratory, Caltech 26 Aug 2017
Nergis Mavalvala MIT IAU214, August 2002
The Advanced LIGO Angular Control System (ASC) (Hanford edition)
Commissioning the LIGO detectors
Workshop on Gravitational Wave Detectors, IEEE, Rome, October 21, 2004
LIGO Detector Commissioning
Status of the LIGO Detectors
LIGO Detector Commissioning
Summary of iKAGRA Test Run Mar 25-31, 2016
Improving LIGO’s stability and sensitivity: commissioning examples
Detector Characterization Session
Presentation transcript:

8/13/2004 Stefan Ballmer, MIT / LIGO Hanford 1 Length and angular control loops in LIGO Stefan Ballmer Massachusetts Institute of Technology LIGO Hanford Observatory

8/13/2004 Stefan Ballmer, MIT / LIGO Hanford 2 Goal Overview of the LSC and ASC control loop fabric Find corresponding data channels (error / control signal) Find corresponding filters of the control system

8/13/2004 Stefan Ballmer, MIT / LIGO Hanford 3 Reading the signals Laser antisymmetric signal symmetric signal pickoff signal transmitted power photodiodes LyLy LxLx lxlx lyly Frequency Response of the LIGO Interferometer T pdf

8/13/2004 Stefan Ballmer, MIT / LIGO Hanford 4 Length Sensing and Control 4 loops: DARM CARM/CM MICH PRC

8/13/2004 Stefan Ballmer, MIT / LIGO Hanford 5 The DARM loop SensingCavity pole (~90Hz,~180Hz for H2) Error signalAS_Q Control filter bankH1:LSC-DARM Control signalDARM_CTRL Actuation calibration (S3) (H1) ~1.7nm/ct, Pendulum at 0.76Hz, Q=10

8/13/2004 Stefan Ballmer, MIT / LIGO Hanford 6 The common mode servo Is an analog servo… SensingDouble cavity pole (~1Hz, ~2Hz for H2) Error signalREFL_I ActuationLaser frequency

8/13/2004 Stefan Ballmer, MIT / LIGO Hanford 7 The common mode servo

8/13/2004 Stefan Ballmer, MIT / LIGO Hanford 8 The PRC loop Sensingflat (due to high CM gain) Error signalPOB_I Control filter bankH1:LSC-PRC Control signalPRC_CTRL Actuation calibration (S3) (H1) ~3nm/ct, Pendulum at 0.76Hz, Q=10 Acting on recycling mirror (RM)

8/13/2004 Stefan Ballmer, MIT / LIGO Hanford 9 The MICH loop Sensingflat Error signalPOB_Q Control filter bankH1:LSC-MICH Control signalMICH_CTRL Actuation calibration (S3) (H1) ~3nm/ct, Pendulum at 0.76Hz, Q=10 Acting on beam splitter (BS) and recycling mirror (RM)

8/13/2004 Stefan Ballmer, MIT / LIGO Hanford 10 Known couplings 1 MICH->DARM  AS_Q 140 times less sensitive to BS than to differential ETM’s (build-up)  MICH loop acts on BS  MICH loop shot noise limited above ~50Hz 2 solutions:  A) until end of S3 (mid S3 at LLO): run MICH loop at low BW (UGF ~11Hz) & filter MICH_CTRL  B) now: run MICH loop at high BW (UGF >50Hz), send MICH_CTRL to ETM’s to cancel known BS motion  reduces coupling by ~40, but MICH_CTRL still significant noise source

8/13/2004 Stefan Ballmer, MIT / LIGO Hanford 11 Known couplings 2 PRC->DARM  Coupling due to arm imbalance (~1/400 for H1), has zero at cavity pole  PRC loop shot noise limited above ~50Hz (same diode as MICH!) Again same 2 solutions:  PRC correction (send PRCH_CTRL to ETM’s) implemented after S3  reduces coupling only by ~2 since arm imbalance is modulated (microseism)

8/13/2004 Stefan Ballmer, MIT / LIGO Hanford 12 Adaptive Input Matrix Arm power and sideband buildup do fluctuate (~10% LHO, ~20%LLO)  Front-end code calculates new input matrix element on the fly (since S3)  Both arm powers and NSPOB are filtered before used (Modules: H1:LSC-NPTRX, H1:LSC-NPTRY, H1:LSC-NSPOB) DARMH1:LSC-ICMTRX_01 MICHH1:LSC-ICMTRX_23 PRCH1:LSC-ICMTRX_12 CM MCL path (static at LLO during S3) H1:LSC-ICMTRX_34

8/13/2004 Stefan Ballmer, MIT / LIGO Hanford 13 Angle Sensing and Control Per optic:  Optical lever –Error signal: H1:SUS-ETMX_OPLEV_PERROR H1:SUS-ETMX_OPLEV_YERROR –Control Signal: H1:SUS-ETMX_OPLEV_POUT H1:SUS-ETMX_OPLEV_YOUT  Local Damping –Error signal: H1:SUS-ETMX_SENSOR_UL H1:SUS-ETMX_SENSOR_UR H1:SUS-ETMX_SENSOR_LL H1:SUS-ETMX_SENSOR_LR Wave front sensors (WFS) –Error signal: H1:ASC-WFS1_QP H1:ASC-WFS2_IP H1:ASC-WFS2_QP H1:ASC-WFS3_IP H1:ASC-WFS4_IP (and …1_QY etc. for yaw) –Control signal H1:ASC-ETMX_P H1:ASC-ETMX_Y etc.

8/13/2004 Stefan Ballmer, MIT / LIGO Hanford 14 Angle Sensing and Control Transmission QPD’s  Error signal: H1:ASC-QPDX_P H1:ASC-QPDX_Y etc. Beam splitter centering servo  Slow servo

8/13/2004 Stefan Ballmer, MIT / LIGO Hanford 15 Where are the filter files? Foton readable files at   Matlab function to read filters: 