Rok Žitko Institute Jožef Stefan Ljubljana, Slovenia

Slides:



Advertisements
Similar presentations
Iteration While / until/ for loop. Iteration: while/ Do-while loops Iteration continues until condition is false: 3 important points to remember: 1.Initalise.
Advertisements

Section 3-1 to 3-2, 3-5 Drawing Lines Some of the material in these slides may have been adapted from university of Virginia, MIT, and Åbo Akademi University.
From weak to strong correlation: A new renormalization group approach to strongly correlated Fermi liquids Alex Hewson, Khan Edwards, Daniel Crow, Imperial.
Quantum impurity problems (QIP) and numerical renormalization group (NRG): quick introduction Rok Žitko Institute Jožef Stefan Ljubljana, Slovenia June.
Spectral functions in NRG Rok Žitko Institute Jožef Stefan Ljubljana, Slovenia.
- Mallorca - Spain Quantum Engineering of States and Devices: Theory and Experiments Obergurgl, Austria 2010 The two impurity.
8.1 Advanced Operating Systems Defeating The Thrashing The RAM is limited. Sometimes, too many processes need large memory allocations and the sum of these.
Implementing a NRG code, handling second quantization expressions, symmetries, parallelization issues Rok Žitko Institute Jožef Stefan Ljubljana, Slovenia.
Dynamical mean-field theory and the NRG as the impurity solver Rok Žitko Institute Jožef Stefan Ljubljana, Slovenia.
Disorder and chaos in quantum system: Anderson localization and its generalization (6 lectures) Boris Altshuler (Columbia) Igor Aleiner (Columbia)
Physics “Advanced Electronic Structure” Lecture 3. Improvements of DFT Contents: 1. LDA+U. 2. LDA+DMFT. 3. Supplements: Self-interaction corrections,
Planning under Uncertainty
Easy Optimization Problems, Relaxation, Local Processing for a single variable.
IJS The Alpha to Gamma Transition in Ce: A Theoretical View From Optical Spectroscopy K. Haule, V. Oudovenko, S. Savrasov, G. Kotliar DMFT(SUNCA method)
Extended Dynamical Mean Field. Metal-insulator transition el-el correlations not important:  band insulator: the lowest conduction band is fullthe lowest.
The Nuts and Bolts of First-Principles Simulation Lecture 16: DFT for Metallic Systems CASTEP Developers’ Group with support from the ESF  k Network Durham,
Renormalised Perturbation Theory ● Motivation ● Illustration with the Anderson impurity model ● Ways of calculating the renormalised parameters ● Range.
CS107 Introduction to Computer Science Lecture 5, 6 An Introduction to Algorithms: List variables.
The alpha to gamma transition in Cerium: a theoretical view from optical spectroscopy Kristjan Haule a,b and Gabriel Kotliar b a Jožef Stefan Institute,
Project topics due today. Next HW due in one week
Transport properties: conductance and thermopower
Tutorial 4: Kondo peak splitting in magnetic field, transport integrals, conductance and thermopower Rok Žitko Institute Jožef Stefan Ljubljana, Slovenia.
Tutorial 1 & 2: getting the code to run, thermodynamics, expectation values, flow diagrams, ground-state energy Rok Žitko Institute Jožef Stefan Ljubljana,
F.F. Assaad. MPI-Stuttgart. Universität-Stuttgart Numerical approaches to the correlated electron problem: Quantum Monte Carlo.  The Monte.
Introduction to Hubbard Model S. A. Jafari Department of Physics, Isfahan Univ. of Tech. Isfahan , IRAN TexPoint fonts used in EMF. Read the.
IVC : a simulation and model-fitting tool for optical-IR interferometry Abstract I present a new software tool, called “Interferometry Visibility Computations”
1 Spring 2003 Prof. Tim Warburton MA557/MA578/CS557 Lecture 5a.
1 Queuing Analysis Overview What is queuing analysis? - to study how people behave in waiting in line so that we could provide a solution with minimizing.
Squirrel Tutorial Pre – Pre-Process Steps Modify Single Ion (SI) M/z Calibration Fitting Baseline Fitting Donna Sueper ToF AMS Training, Aerodyne, Nov/Dec.
Random Sampling Approximations of E(X), p.m.f, and p.d.f.
Generalized Dynamical Mean - Field Theory for Strongly Correlated Systems E.Z.Kuchinskii 1, I.A. Nekrasov 1, M.V.Sadovskii 1,2 1 Institute for Electrophysics.
Tutorial 3: spectral functions for SIAM, arbitrary DOS, finite-tempratures, T-matrix for Kondo model Rok Žitko Institute Jožef Stefan Ljubljana, Slovenia.
Linear Systems – Iterative methods
Linear scaling solvers based on Wannier-like functions P. Ordejón Institut de Ciència de Materials de Barcelona (CSIC)
Ch 10.6: Other Heat Conduction Problems
Refmod maker Binput to sfit4.ctl converter update Output levels Comment line / version / run date / # reference 2 – every thing currently except very redundant.
Discretization, z-averaging, thermodynamics, flow diagrams Rok Žitko Institute Jožef Stefan Ljubljana, Slovenia.
ES 07 These slides can be found at optimized for Windows)
Control flow Ruth Anderson UW CSE 160 Spring
Linear Regression Models Andy Wang CIS Computer Systems Performance Analysis.
Power Series Lesson 9.8 (Yes, we’re doing this before 9.7)
1 EMCAL Reconstruction in Pass pp 900 GeV 29/03/2010 Gustavo Conesa Balbastre.
Control flow Ruth Anderson UW CSE 160 Winter
STAR SVT Self Alignment V. Perevoztchikov Brookhaven National Laboratory,USA.
Alternative Code to Calculate NMH Sensitivity J. Brunner 16/10/
Today… Python Keywords. Iteration (or “Loops”!) Winter 2016CISC101 - Prof. McLeod1.
CS 121 – Quiz Feb 1 st. Question 3 Script Outlines #it is always beneficial to write “restart” at the beginning of your script to clear all variables.
Practice #2: Solid Yong-Hyun Kim NST551.
Kondo Effect Ljubljana, Author: Lara Ulčakar
List manipulation;curve fitting
Implicit Volatility Stefano Grazioli.
Programming assignment #1. Solutions and Discussion
Implicit Volatility Stefano Grazioli.
Ruth Anderson UW CSE 160 Winter 2017
Broad-band CW searches in LIGO and GEO S2 and S3 data
Fermi surface, pseudogap and superconductivity in the t-J model
Update on TB 2007 Xtal Irradiation Studies at H4
Broad-band CW searches in LIGO and GEO S2 and S3 data
LIGO Scientific Collaboration, UW - Milwaukee
Broad-band CW searches in LIGO and GEO S2 and S3 data
Ruth Anderson UW CSE 140 Winter 2014
Status report Minjung Kim
龙讯教程 How to simulate ultrafast dynamics using rt-TDDFT in Pwmat?
Project 1: Brake System Modelling & Control
第19回 応用物理学科セミナー 日時: 2月8日(月) 16:30 – 17:30 場所:葛飾キャンパス研究棟8F第2セミナー室
Report on p0 decay width: analysis updates
w and r± sources of p0 background in PRIMEX
Implicit Volatility Stefano Grazioli.
Implicit Volatility Stefano Grazioli.
° status report analysis details: overview; “where we are”; plans: before finalizing result.. I.Larin 02/13/2009.
Presentation transcript:

Rok Žitko Institute Jožef Stefan Ljubljana, Slovenia Tutorial 6: DMFT calculations for the Hubbard model, metal-insulator transition, KLM, PAM Rok Žitko Institute Jožef Stefan Ljubljana, Slovenia

Updated lecture & tutorial slides, and update materials for tutorials: http://nrgljubljana.ijs.si/ (Note: 50MB compressed. )

Implementation using shell and perl scripts dmft_mon: initializes the calculation (dmft_init, builds an approximation for D) runs nrginit and submits the calculations (nrgrun) to the cluser waits for the calculations to finish, processes the results (dmft_done) checks for convergence (checkconv): if not, starts a new loop

dmft_done: average: do the z-averaging of spectral functions realparts: Kramers-Kronig to obtain real parts of G and F sigmatrick: compute S bandDOS: compute lattice G copyresults (snapshot of current DMFT step), occupancies (<n>, etc.) dmftDOS: compute D for new DMFT step broyden: do the Broyden mixing in order to obtain improved D

the shift of the center of the conduction band (note than m=0) #!/usr/bin/env looper # #PRELUDE: $Nz=4; $DELTA=`cat param.delta`; #AUTOLOOP: ../odesolv1 ; nrginit ; nrgrun [dmft] Nz=4 # D=1/scale=0.1, thus W=2D=0.2 scale=10 clip=1e-4 # Target occupancy goal=0.8 # Broyden offset=1 M=1000 alpha=0.5 [param] xmax=15 adapt=false tri=cpp preccpp=2000 prec=100 symtype=QS model=../model.m fixeps=1e-10 param.loop param.delta contains d, the shift of the center of the conduction band (note than m=0) discretization solver we need to rescale all the energies to make them fit in the NRG energy window of [-1:1] fixed occupancy calculation with <n>=0.8 parameters for odesolv parameters for tridiagonalization

U=0.22 delta=$DELTA Lambda=4.0 Tmin=1e-10 keepmin=500 keepenergy=10.0 keep=8000 discretization=Z band=asymode dos=../Delta.dat @$z = 1.0/$Nz; $z <= 1.00001; $z += 1/$Nz z=$z strategy=kept ops=A_d self_d n_d n_d_ud Himp Hhyb Hpot specd=A_d-A_d self_d-A_d 0.22 x scale -> U=2.2D arbitrary DOS

fdm=true fdmexpv=true broaden=false savebins=true bins=1000 T=1e-09 broaden_max=4 broaden_ratio=1.01 broaden_min=1e-8 width_custom=20 prec_custom=14 done=true

model.m def1ch[1]; H1 = delta number[d[]] + U/2 pow[number[d[]]-1, 2]; Hc = Sum[gammaPolCh[ch] hop[f[ch-1], d[]], {ch, CHANNELS}]; Himp = H1; Hhyb = Hc; Hpot = U hubbard[d[]]; H = Himp + Hhyb + H0; (* All operators which contain d[], except hybridization (Hc). *) Hselfd = Himp; selfopd = ( Chop @ Expand @ komutator[Hselfd /. params, d[#1, #2]] )&;

3a_plot 45_Hubbard <n>=0.8, U/D=4, T=0

3b_plot_sigma

3b_plot_sigma_zoom

3d_plot_diffs

3e_plot_all

Causality violation: well-known problem in NRG!

NOTE: when restarting a DMFT calculation, erase the file ITER NOTE: when restarting a DMFT calculation, erase the file ITER. This tells the code to restart (and prevents Broyden mixer from complaining that the previous results cannot be loaded). This will still reuse the result from the previous calculation as an initial approximation. If you want to start from scratch, erase the file ITER and all files named Delta*.

Exercises Reduce the doping (i.e., goal ➝ 1). How does the quasiparticle peak evolve? Increase the temperature. Follow the changes in the spectral function and in S. Try different initial hybridization functions (i.e., create a file DeltaFirst.dat). Is the converged solution always the same? Note: see also 47_Hubbard_fast, larger L=4, much faster calculations!

3a_plot 46_Hubbard_MIT

3b_plot_sigma

3b_plot_sigma_zoom

Exercises Increase U and locate the MIT at U=Uc2. Starting from an insulating initial approximation, reduce U and locate the MIT at U=Uc1. Do an U-sweep at finite temperature T=0.06D. Observe the cross-over from metal-like to insulator-like spectral functions.

Kondo lattice model 48_klm

d SPIN J model.m def1ch[1]; If[!paramexists["spin", "extra"], MyError["Define the spin of the impurity!"]; ]; SPIN = ToExpression @ param["spin", "extra"]; MyPrint["SPIN=", SPIN]; Module[{sz, sp, sm, sx, sy, oz, op, om, ss}, sz = spinketbraZ[SPIN]; sp = spinketbraP[SPIN]; sm = spinketbraM[SPIN]; sx = spinketbraX[SPIN]; sy = spinketbraY[SPIN]; oz = nc[ sz, spinz[ d[] ] ]; op = nc[ sp, spinminus[ d[] ] ]; om = nc[ sm, spinplus[ d[] ] ]; ss = oz + 1/2 (op + om) // Expand; Hk = Jkondo ss; SPIN J d model.m

H = H0 + H1 + Hc + Hk; MAKESPINKET = SPIN; (* All operators which contain d[], except hybridization (Hc). *) Hselfd = H1 + Hk; selfopd = ( Chop @ Expand @ komutator[Hselfd /. params, d[#1, #2]] )&;

[extra] spin=1/2 Jkondo=0.05 [param] xmax=15 adapt=false tri=cpp preccpp=2000 prec=100 symtype=QS model=../model.m fixeps=1e-10 U=0 delta=$DELTA Gamma=-999 param.loop

3a_plot

3c_plot_sigma_zoom

Exercises Change the target occupancy (parameter goal in param.loop) towards 1. What happens? Increase J. How does the width of the pseudogap decrease?

Periodic Anderson model f f f t t t c c c 49_pam

model.m def1ch[2]; Ha = eps number[a[]] + Uf hubbard[a[]]; H1a = t hop[d[], a[]]; H = H0 + H1 + Hc + Ha + H1a; (* All operators which contain d[], except hybridization (Hc). *) Hselfd = H1 + H1a; selfopd = ( Chop @ Expand @ komutator[Hselfd /. params, d[#1, #2]] )&; model.m

[extra] Uf=0.3 eps=-0.15 [param] xmax=15 adapt=false tri=cpp preccpp=2000 prec=100 symtype=QS model=../model.m fixeps=1e-10 U=0 t=0.05 delta=$DELTA Gamma=-999 param.loop

Exercises Decrease Uf towards 0. What happens? Increase t. What happens?