1 Numerical Simulation for Flow in 3D Highly Heterogeneous Fractured Media H. Mustapha J. Erhel J.R. De Dreuzy H. Mustapha INRIA, SIAM Juin 2005.

Slides:



Advertisements
Similar presentations
Steady-state heat conduction on triangulated planar domain May, 2002
Advertisements

1 A parallel software for a saltwater intrusion problem E. Canot IRISA/CNRS J. Erhel IRISA/INRIA Rennes C. de Dieuleveult IRISA/INRIA Rennes.
A parallel scientific software for heterogeneous hydrogeoloy
Numerical simulation of solute transport in heterogeneous porous media A. Beaudoin, J.-R. de Dreuzy, J. Erhel Workshop High Performance Computing at LAMSIN.
Reactive transport A COMPARISON BETWEEN SEQUENTIAL ITERATIVE AND GLOBAL METHODS FOR A REACTIVE TRANSPORT NUMERICAL MODEL J. Erhel INRIA - RENNES - FRANCE.
MANE 4240 & CIVL 4240 Introduction to Finite Elements
1 Modal methods for 3D heterogeneous neutronics core calculations using the mixed dual solver MINOS. Application to complex geometries and parallel processing.
Sparse linear solvers applied to parallel simulations of underground flow in porous and fractured media A. Beaudoin 1, J.R. De Dreuzy 2, J. Erhel 1 and.
How to solve a large sparse linear system arising in groundwater and CFD problems J. Erhel, team Sage, INRIA, Rennes, France Joint work with A. Beaudoin.
1 High performance Computing Applied to a Saltwater Intrusion Numerical Model E. Canot IRISA/CNRS J. Erhel IRISA/INRIA Rennes C. de Dieuleveult IRISA/INRIA.
HYDROGEOLOGIE ECOULEMENT EN MILIEU HETEROGENE J. Erhel – INRIA / RENNES J-R. de Dreuzy – CAREN / RENNES P. Davy – CAREN / RENNES Chaire UNESCO - Calcul.
1 A new iterative technique for solving nonlinear coupled equations arising from nuclear waste transport processes H. HOTEIT 1,2, Ph. ACKERER 2, R. MOSE.
1 Modélisation et simulation appliquées au suivi de pollution des nappes phréatiques Jocelyne Erhel Équipe Sage, INRIA Rennes Mesures, Modélisation et.
Inversion of coupled groundwater flow and heat transfer M. Bücker 1, V.Rath 2 & A. Wolf 1 1 Scientific Computing, 2 Applied Geophysics Bommerholz ,
A modified Lagrangian-volumes method to simulate nonlinearly and kinetically adsorbing solute transport in heterogeneous media J.-R. de Dreuzy, Ph. Davy,
High performance flow simulation in discrete fracture networks and heterogeneous porous media Jocelyne Erhel INRIA Rennes Jean-Raynald de Dreuzy Geosciences.
Simulating Large Networks using Fluid Flow Model Yong Liu Joint work with Francesco LoPresti, Vishal Misra Don Towsley, Yu Gu.
Dual Mesh Method in Upscaling Pascal Audigane and Martin Blunt Imperial College London SPE Reservoir Simulation Symposium, Houston, 3-5 February 2003.
Coupling Continuum Model and Smoothed Particle Hydrodynamics Methods for Reactive Transport Yilin Fang, Timothy D Scheibe and Alexandre M Tartakovsky Pacific.
Katsuyo Thornton*, R. Edwin García✝, Larry Aagesen*
Chapter 17 Design Analysis using Inventor Stress Analysis Module
An efficient parallel particle tracker For advection-diffusion simulations In heterogeneous porous media Euro-Par 2007 IRISA - Rennes August 2007.
A Bezier Based Approach to Unstructured Moving Meshes ALADDIN and Sangria Gary Miller David Cardoze Todd Phillips Noel Walkington Mark Olah Miklos Bergou.
I DENTIFICATION OF main flow structures for highly CHANNELED FLOW IN FRACTURED MEDIA by solving the inverse problem R. Le Goc (1)(2), J.-R. de Dreuzy (1)
Multi-Scale Finite-Volume (MSFV) method for elliptic problems Subsurface flow simulation Mark van Kraaij, CASA Seminar Wednesday 13 April 2005.
Network and Grid Computing –Modeling, Algorithms, and Software Mo Mu Joint work with Xiao Hong Zhu, Falcon Siu.
Direct and iterative sparse linear solvers applied to groundwater flow simulations Matrix Analysis and Applications October 2007.
1 Parallel Simulations of Underground Flow in Porous and Fractured Media H. Mustapha 1,2, A. Beaudoin 1, J. Erhel 1 and J.R. De Dreuzy IRISA – INRIA.
Nawaf M Albadia Introduction. Components. Behavior & Characteristics. Classes & Rules. Grid Dimensions. Evolving Cellular Automata using Genetic.
The Finite Element Method
Parametric Modeling.
Math 71A 3.1 – Systems of Linear Equations in Two Variables 1.
DYNAS Workshop 6,7,8/12/04 Mixed Hybrid Finite Element and Iterative Methods for Flow in Porous Media E. Mouche, C. Le Potier, P. Maugis, L.V. Benet. Commissariat.
Dubrovnik meeting, 13/10/ Different approaches to simulate flow and transport in a multi scale fractured block October 2008 Bernard-Michel G. Grenier.
CIS V/EE894R/ME894V A Case Study in Computational Science & Engineering HW 5 Repeat the HW associated with the FD LBI except that you will now use.
Finite Element Method.
A comparison between a direct and a multigrid sparse linear solvers for highly heterogeneous flux computations A. Beaudoin, J.-R. De Dreuzy and J. Erhel.
ParCFD Parallel computation of pollutant dispersion in industrial sites Julien Montagnier Marc Buffat David Guibert.
A conservative FE-discretisation of the Navier-Stokes equation JASS 2005, St. Petersburg Thomas Satzger.
The Geometry of Biomolecular Solvation 2. Electrostatics Patrice Koehl Computer Science and Genome Center
C GasparAdvances in Numerical Algorithms, Graz, Fast interpolation techniques and meshless methods Csaba Gáspár Széchenyi István University, Department.
Final Project Solution to a Hyperbolic problem using Mimetic Methods Caplan,Ron Jimenez, Rosa Martinez, Joan M. M 542 Intro. to Numerical Solutions to.
1 The reactive transport benchmark J. Carrayrou Institut de Mécanique des Fluides et des Solides, Laboratoire d’Hydrologie et de Géochimie de Strasbourg,
Math /4.2/4.3 – Solving Systems of Linear Equations 1.
© Fluent Inc. 11/24/2015J1 Fluids Review TRN Overview of CFD Solution Methodologies.
Finite Element Analysis
The Configuration Factors between Ring Shape Finite Areas in Cylinders and Cones Cosmin DAN, Gilbert DE MEY.
Finite Element Methods and Crack Growth Simulations Materials Simulations Physics 681, Spring 1999 David (Chuin-Shan) Chen Postdoc, Cornell Fracture Group.
A Dirichlet-to-Neumann (DtN)Multigrid Algorithm for Locally Conservative Methods Sandia National Laboratories is a multi program laboratory managed and.
23/5/20051 ICCS congres, Atlanta, USA May 23, 2005 The Deflation Accelerated Schwarz Method for CFD C. Vuik Delft University of Technology
Modeling Electromagnetic Fields in Strongly Inhomogeneous Media
Forging new generations of engineers. Parametric Modeling.
Variational and Weighted Residual Methods
Generalized Finite Element Methods
Partial Derivatives Example: Find If solution: Partial Derivatives Example: Find If solution: gradient grad(u) = gradient.
HYDROGRID J. Erhel – October 2004 Components and grids  Deployment of components  CORBA model  Parallel components with GridCCM Homogeneous cluster.
Digital Image Processing Lecture 17: Segmentation: Canny Edge Detector & Hough Transform Prof. Charlene Tsai.
A Parallel Hierarchical Solver for the Poisson Equation Seung Lee Deparment of Mechanical Engineering
Materials Process Design and Control Laboratory MULTISCALE COMPUTATIONAL MODELING OF ALLOY SOLIDIFICATION PROCESSES Materials Process Design and Control.
1 Copyright by PZ Bar-Yoseph © Finite Element Methods in Engineering Winter Semester Lecture 7.
Hybrid Parallel Implementation of The DG Method Advanced Computing Department/ CAAM 03/03/2016 N. Chaabane, B. Riviere, H. Calandra, M. Sekachev, S. Hamlaoui.
Computational Fluid Dynamics Lecture II Numerical Methods and Criteria for CFD Dr. Ugur GUVEN Professor of Aerospace Engineering.
Katsuyo Thornton1, R. Edwin García2, Larry Aagesen3
Department of Mathematics
Dual Mesh Method in Dynamic Upscaling
MANE 4240 & CIVL 4240 Introduction to Finite Elements
Convergence in Computational Science
Jean-Raynald de Dreuzy Philippe Davy Micas UMR Géosciences Rennes
FraC: a DFN conforming meshing approach used to obtain reference simulations for steady-state flow, transport and well-test simulations T-D. Ngo, A. Fourno,
Investigators Tony Johnson, T. V. Hromadka II and Steve Horton
Presentation transcript:

1 Numerical Simulation for Flow in 3D Highly Heterogeneous Fractured Media H. Mustapha J. Erhel J.R. De Dreuzy H. Mustapha INRIA, SIAM Juin 2005

2 Outline Fractured media  geometrical model  flow fluid model Mesh requirements for Finite Element Methods  numerical method  mesh generation difficulties New approach for computing flow based on a projection method  main idea and some examples  quality of the mesh and precision of the computed solution Conclusions and future work H. Mustapha INRIA, SIAM Juin 2005

3 Outline Fractured media  geometrical model  flow fluid model Mesh requirements for Finite Element Methods  numerical method  mesh generation difficulties New approach for computing flow based on a projection method  main idea and some examples  quality of the mesh and precision of the computed solution Conclusions and future work H. Mustapha INRIA, SIAM Juin 2005

4 Geometrical model Discrete fracture network. Impervious matrix. Only the fractures are considered. Network = Set of fractures. H. Mustapha INRIA, SIAM Juin 2005

5  Equations  Q = - K*grad (h)  div (Q) = 0  Boundary conditions Flow fluid model Fixed head (Dirichlet) Q.n = 0 (Neumann) H. Mustapha INRIA, SIAM Juin 2005

6 Outline Fractured media  geometrical model  flow fluid model Mesh requirements for Finite Element Methods  numerical method  mesh generation difficulties New approach for computing flow based on a projection method  main idea and some examples  quality of the mesh and precision of the computed solution Conclusions and future works H. Mustapha INRIA, SIAM Juin 2005

7 Numerical method Mixed Hybrid Finite Element Method complete 3D mesh of the network mesh of each fracture with identical intersections (conforming mesh) Global linear system Assembled by all corresponding fractures linear systems Direct linear solver Conforming mesh H. Mustapha INRIA, SIAM Juin 2005

8 Geometrical complexity: fractures and network Origin of the complexity Important number of intersections. Existence of small intersections. Existence of zones containing small angles => need mesh refinement to improve the quality. Our approach To modify the complex configurations What is the simplifications criteria ? What is the loss in precision ? What are the CPU time and memory capacity improvements ? The blue counter is the fracture border. The red lines are the intersections with the cube borders. The black lines are the intersections with the other fractures of the network. H. Mustapha INRIA, SIAM Juin 2005

9 Network properties size : 18 number of fractures: 285 Generation and quality of the mesh for the fracture networks Mesh After refinement % Number of angles Angle in degree Distribution of angles H. Mustapha INRIA, SIAM Juin 2005 zoom before refinement

10 Outline Fractured media  geometrical model  flow fluid model Problem presentation  geometrical complexity in two scales: fractures and network  classical mesh generation for fracture networks New approach for computing flow based on a projection method  main idea and some examples  quality of the mesh and precision of the computed solution Conclusions and future works H. Mustapha INRIA, SIAM Juin 2005

11 Main idea Step (1) 2D Projection 3D projection Generalization H. Mustapha INRIA, SIAM Juin 2005

12 Main idea Step (2) 2D projection H. Mustapha INRIA, SIAM Juin 2005

13 Results of our approach Example 1: projection method H. Mustapha INRIA, SIAM Juin 2005

14 Results of our approach Example 2: projection and generation mesh H. Mustapha INRIA, SIAM Juin 2005

15 Generation and mesh quality using the new approach Mesh with projection Network properties size : 18 number of fractures: 285 H. Mustapha INRIA, SIAM Juin 2005

16 Our new approach: Use a projection method as a simple criteria Lead to a reduced configuration Allows to mesh complex fracture networks Questions to address: What is the loss in precision ? What are the CPU time and memory capacity improvements ? Summary H. Mustapha INRIA, SIAM Juin 2005

17 Precision of computed solution L Q h1h1 h2h2 Math formulas: Global equivalent permeability: Average flow across the fractures:, N: number of fractures Average flow across the intersections:, M: number of intersections Errors: EN = EF = EI = H. Mustapha INRIA, SIAM Juin 2005

18 Very small mesh step K ref K app EN4×10 -6 EF1.8×10 -5 EI2×10 -5 Solution obtained with high precision Approximate solution can be used as a reference solution Precision of computed solution With MHFE method Network properties size : 18 number of fractures: 285 H. Mustapha INRIA, SIAM Juin 2005

19 Examples of mesh and computed solution 3 fractures Head 450 fractures Head 1800 fractures h1 h2 H. Mustapha INRIA, SIAM Juin 2005 Network mesh: 285 fractures

20 Precision and numerical error Loss in precision: 5% Good quality of the mesh Reference solution Mesh step : 0.08 H. Mustapha INRIA, SIAM Juin 2005

21 mesh steplinear system sizeCPU time Memory usage decrease: 80% CPU time decrease: 90% H. Mustapha INRIA, SIAM Juin 2005

22 Outline Fractured media  geometrical model  flow fluid model Problem presentation  geometrical complexity in two scales: fractures and network  classical mesh generation for fracture networks New approach for computing flow based on a projection method  main idea and some examples  quality of the mesh and precision of the computed solution Conclusions and future works H. Mustapha INRIA, SIAM Juin 2005

23 Conclusions Mesh generation of complex fracture networks. Approximate geometry by projection. The loss in precision of computed solution is very small. The improvement in CPU time and memory capacity is very important. Future work Parallel computation. Stochastic experiments. H. Mustapha INRIA, SIAM Juin 2005