Answers to exam #2 Ver III 90-97n=16 80-89n=42 70-79n=45 60-69n=20 <60n=4 Total = 127.

Slides:



Advertisements
Similar presentations
E C D B F 1 1- A ~ (a + b) ~ c ~ a Example 3 : solution.
Advertisements

SENSITIVITY ANALYSIS. luminous lamps produces three types of lamps A, B And C. These lamps are processed on three machines X, Y and Z. the full technology.
Tutor Tues Apr 2, 2-4 PM since no classes Apr 1 Set 6 due Apr 9 Set 7 due April 11 C-3 due April 18.
Notes 4IE 3121 Why Sensitivity Analysis So far: find an optimium solution given certain constant parameters (costs, demand, etc) How well do we know these.
FRQ /4.
1.5 Using the Definitions of the Trigonometric Functions OBJ: Give the signs of the six trigonometric functions for a given angle OBJ: Identify the quadrant.
1 Financial Mathematics Clicker review session, Midterm 01.
1 Financial Mathematics Clicker review session, Final.
1 Financial Mathematics Clicker review session, Midterm 01.
I.1 ii.2 iii.3 iv.4 1+1=. i.1 ii.2 iii.3 iv.4 1+1=
Answer to set 1 Graphical Linear Programming. (1) 4X1 + 3X2 >96 X1X2 096/3=32 96/4=240.
Exam Feb 28: sets 1,2 Set 2 due Thurs. LP SENSITIVITY Ch 3.
I.1 ii.2 iii.3 iv.4 1+1=. i.1 ii.2 iii.3 iv.4 1+1=
Problem Set # 4 Maximize f(x) = 3x1 + 2 x2 subject to x1 ≤ 4 x1 + 3 x2 ≤ 15 2x1 + x2 ≤ 10 Problem 1 Solve these problems using the simplex tableau. Maximize.
1 1 Slide LINEAR PROGRAMMING Introduction to Sensitivity Analysis Professor Ahmadi.

Properties of Logarithms
Functions A function is a relationship between two sets: the domain (input) and the range (output) DomainRange Input Output This.
8.1.4 Can it still be factored? Factoring Completely I can factor out a common factor.
Type your question here. Type Answer Type your question here. Type Answer.
Continuity of A Function. A function f(x) is continuous at x = c if and only if all three of the following tests hold: f(x) is right continuous at x =
Quiz May 10 ‘07 Games MAX coin: p(left)=1/4 MIN coin: p(left)=1/2 Assume that MAX and MIN are rational players.
Using Fundamental Identities To Find Exact Values. Given certain trigonometric function values, we can find the other basic function values using reference.
Continuity of A Function 2.2. A function f(x) is continuous at x = c if and only if all three of the following tests hold: f(x) is right continuous at.
Answers to set 3 Set 4 due Thurs March 14 Memo C-2 due Tues March 19 Next exam Thurs April 4 Tutor Mon 4-6PM, Thurs 2-4PM, BB 4120.
Part 4 Nonlinear Programming 4.1 Introduction. Standard Form.
1 Ver Formulating research question and hypothesis.
Lesson 9-1 Scatter Plots Obj: The student will be able to create and interpret scatter plots HWK: p all Vocab: 1) scatter plot 2) correlation 3)
Differential Diagnoses September 25, You are a psychologist who has been referred 5 cases from the local school district. You have been asked to.
LP Examples Solid Waste Management. A SOLID WASTE PROBLEM Landfill Maximum capacity (tons/day) Cost of transfer to landfill ($/ton) Cost of disposal at.
LP SENSITIVITY. Graphical Sensitivity Analysis A.Objective Function B.Left-hand side of constraint C.Right-hand side of constraint.
LINEAR PROGRAMMING Classic Types of Constrained Decision Problems 1. Product Mix 2. Ingredient Mix 3. Transportation 4. Assignment 5. Time Period.
Write Ordered Pairs A. Write the ordered pair that names the point P. The x-coordinate is 4. The y-coordinate is –2. Answer: The ordered pair is (4, –2).
ΟΡΓΑΝΩΣΗ ΚΑΙ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ 3 Ο ΜΑΘΗΜΑ. ΟΙ ΜΕΓΑΛΕΣ ΕΠΙΧΕΙΡΗΣΕΙΣ Η δημιουργία μεγάλων επιχειρήσεων είναι ένα από τα χαρακτηριστικά του 20 ου αιώνα.
Adding Fractions Subtracting Fractions Adding Mixed Numbers
Specific Heat Assignment Part I
The Perfect Marriage! Ephesians 5:21-33.
ФОНД ЗА РАЗВОЈ РЕПУБЛИКЕ СРБИЈЕ
1.
تحليل الحساسية Sensitive Analysis.
Lesson 9-1 Scatter Plots Obj: I can create and interpret scatter plots HWK: p all Vocab: 1) scatter plot 2) correlation 3) positive correlation.
Homework #9 1. A reclamation center produces two products, A and B. The sales volume for produce A is at least 60 % of the total sales of the two products.
بعض النقاط التي تؤخذ في الحسبان عند تقييم الاستثمارات الزراعية
סדר דין פלילי – חקיקה ומהות ההליך הפלילי
Exam Instructions Please answer 7 questions and the case study (100 points total). Required part of your exam: questions 2 (choose only 5 of the approaches.
This condition occurs when the problem has incompatible constraints.
!'!!. = pt >pt > \ ___,..___,..
LP Example of Soil Stability

Как да кандидатстваме по НИФ
ОПЕРАТИВНА ПРОГРАМА “ИНОВАЦИИ И КОНКУРЕНТОСПОСОБНОСТ“ „Подобряване на производствения капацитет в МСП“
'III \-\- I ', I ,, - -
Monday, Sept 11th, How do they form? -Where are they found?
Part 4 Nonlinear Programming
Lesson 9-1 Scatter Plots Obj: I can create and interpret scatter plots HWK: p all Vocab: 1) scatter plot 2) correlation 3) positive correlation.
4.5 The Point-Slope Form of an Equation of a Line
Solving Equations 3x+7 –7 13 –7 =.
ECE 329 Problems HKN Spring 2017 Exam 1.
1,000, , , Year Old Topic 1 10 Year Old Topic 2 175, ,000 9 Year Old Topic 3 9 Year Old Topic 4 50,000 8 Year Old Topic 5 8 Year.
Write and underline the date and title. Write the Learning objective.
Ver 2.0.
Example Make x the subject of the formula
You must show all steps of your working out.
Question 1.
Warm Up.
,, 'III \-\-
Radical Operations By Anthony Rolland.
Current Decision Framework Flow Chart
7 pt 7 pt 7 pt 7 pt 7 pt 14 pt 14 pt 14 pt 14 pt 14 pt 21 pt 21 pt
U A B II III I IV 94.
Presentation transcript:

Answers to exam #2 Ver III 90-97n= n= n= n=20 <60n=4 Total = 127

1)obj fn: c1+28x2 = z 28x2 = z –c1x1 x2 = z/28 –(c1/28)x1 Constr 1) 2x1 + x2 = 200 x2 = 200 –2x1 c1/28 = 2, so c1 < 56 since old c1=5

Constr 2) 4x1+7x2=600 7x2=600-4x1 x2 = 600/7 –(4/7)x1 obj fn: c1/28 = 4/7 c1 < 16 since old c1=5

Short answer: 3 pt each 2) data envelopment analysis (p 135) 3) parameters (p 73) 4) Minnesota (p 42)

5) formulation(31 pt) B)obj fn MIN 10000x x2 Constr#1) x2 2, or x1> 2x2, or x2/x1 <.5 #2) 140x1 + 70x2 > 100 #3) 90x1+40x2 > 2 50x1 + 30x2

#4) 40x1+35x2 <.20 (at most) 140x1+70x2 This problem was inspired by homework problem 31, Taylor p 155

(6)orig problem intercepts 40 pt x1X

(0,1.333) (2,0) (0,-4.5) (3,0) infeasible (0,0)

6a) feasible pts x1x23x1+7x =min 309

Exam format 6b: make 2 brooms 6c: cost = 6

6d) new intercepts x1X

(0,3.333) (0,-4.5) (3,0) infeasible (0,0) (5,0(5,0 (5,0) infea infeasible (3.6,.9)

6d) feasible pts x1x23x1+7x =min

6) Exam format E) make 3.6 brooms,.9 rakes F) min cost =17 G) orig: no rakes, new: makes rakes, so output sensitive H) orig: slack >0 (optimum not on both constr), new: slack = 0, so input sensitive

IV(1) formulation(31 pt) B)obj fn MIN 12000x x2 Constr#1) x2 2, or x1> 2x2, or x2/x1 <.5 #2) 180x1 + 95x2 > 100 #3) 110x1+50x2 > 2 70x2 + 45x2

#4) 60x1+45x2 <.20 (at most) 180x1+95x2

IV(2)orig problem intercepts 40 pt x1X

(0,1) (1.5,0) (0,-4.5) (3,0) infeasible (0,0)

IV(2)(a) feasible pts x1x23x1+7x =min 309

IV(2)(b)make 1.5 brooms IV(2)© cost = $ 4.50

IV(2)(d): new intercepts x1X

(0,3) (0,-4.5) (3,0) infeasible (0,0) (4.5,0) (3.5,.7) infeasible

IV(2)(d):feasible pts x1x23x1+7x =min

IV(2)(e) Make 3.5 brooms,.7 rakes (f) 15 (g) output sensitive (new: rakes>0) (h) input sensitive (new slack =0)

IV(3)obj fn: c1+28x2 = z 28x2 = z –c1x1 x2 = z/28 –(c1/28)x1 Constr 1) 2x1 + x2 = 200 x2 = 200 –2x1 c1/28 = 2, so c1 < 56 since old c1=5

Constr 2) 4x1+6x2=600 7x2=600-6x1 x2 = 600/7 –(6/7)x1 obj fn: c1/28 = 6/7 c1 < 24 since old c1=5