Multiplexer as a Universal Function Generator Lecture L6.7 Section 6.2
Multiplexers Y 4 x 1 MUX s0s1 C0 C1 C2 C3 Y s1s0 0 0 C0 0 1 C1 1 0 C2 1 1 C3
Multiplexers Y 4 x 1 MUX s0s1 C0 C1 C2 C3 Y s1s0 0 0 C0 0 1 C1 1 0 C2 1 1 C =XOR
Multiplexers Y 4 x 1 MUX s0s1 C0 C1 C2 C3 Y s1s0 0 0 C0 0 1 C1 1 0 C2 1 1 C =AND
Multiplexers Y 4 x 1 MUX s0s1 C0 C1 C2 C3 Y s1s0 0 0 C0 0 1 C1 1 0 C2 1 1 C =OR
Multiplexers Y 4 x 1 MUX s0s1 C0 C1 C2 C3 Y s1s0 0 0 C0 0 1 C1 1 0 C2 1 1 C =NAND
Multiplexers Y 4 x 1 MUX s0s1 C0 C1 C2 C3 Y s1s0 0 0 C0 0 1 C1 1 0 C2 1 1 C =NOR Can you implement a logic circuit with THREE inputs using a 4 x 1 MUX?
2 x 1 MUX is a universal element
Step 1 Gout = x & !y # x & Gin # !y & Gin A = !y & Gin B = !y # Gin # !y & Gin x = 0 x = 1 Implement the following logic equation using 2 x 1 MUXs
Step 2 A = !y & Gin B = !y # Gin # !y & Gin y = 0 0-input = Gin y = 1 1-input = 0 y = 0 0-input = 1 y = 1 1-input = Gin
4 x 1 MUX The variable Gout is 1 if x > y or if x = y and Gin = 1.
Majority Circuit Y 4 x 1 MUX s1s2 C0 C1 C2 C3 0 s0 1