Doc.: IEEE 802.11-04/794r1 Submission Slide 1 André Bourdoux (IMEC) July 2004 Preambles for MIMO channel estimation André Bourdoux Bart Van Poucke Liesbet.

Slides:



Advertisements
Similar presentations
Doc.: IEEE /792r1 Submission Slide 1 André Bourdoux (IMEC) July 2004 Transmit processing: a viable scheme for MIMO-OFDM in n André Bourdoux.
Advertisements

Doc.: IEEE Submission March 2007 Chang-Joo Kim, ETRISlide 1 [Simulation results on 2 or 3 repetitions of preamble structure] IEEE.
1 MIMO Supports for IEEE m Synchronization Channel IEEE Presentation Submission Template (Rev. 9) Document Number: IEEE C802.16m-08/1164 Date.
Doc.:IEEE / ac Submission Richard van Nee, Qualcomm September 2009 Uplink MU-MIMO Sensitivity to Power Differences and Synchronization.
Implement a 2x2 MIMO OFDM-based channel measurement system (no data yet) at 2.4 GHz Perform baseband processing and digital up and down conversion on Nallatech.
Doc.: IEEE /0099 Submission Payload Symbol Size for 11ax January 2015 Ron Porat, BroadcomSlide 1 Date: Authors:
Doc.: IEEE /1228r0 Submission September 2014 xxx, NEWRACOM Issues on 256-FFT per 20MHz Date: Authors: Slide 1.
Doc.: IEEE /0363r1 Submission Pilot Value Definitions March 2012 Seunghee Han, LG ElectronicsSlide 1 Date: Authors:
Phase Tracking During VHT-LTF
Doc.: IEEE /1399r0 Submission November 2014 Multi-Carrier Training Field for OFDM Transmission in aj (45GHz) Authors/contributors: Date:
1 IEEE m Synchronization Channel IEEE Presentation Submission Template (Rev. 9) Document Number: IEEE C802.16m-08/823r1 Date Submitted:
Doc.: IEEE /0099 Submission Payload Symbol Size for 11ax January 2015 Ron Porat, BroadcomSlide 1 Date: Authors:
Submission doc.: IEEE /0845r0 July 2015 Daewon Lee, NewracomSlide 1 LTF Design for Uplink MU-MIMO Date: Authors:
Doc.: IEEE /209r2 Submission March 2004 Lanzl, Aware; Ketchum, QualcommSlide 1 Carrier Frequency / Symbol Clock Offset Proposal for TGn FRCC Colin.
TGn Sync An IEEE n Protocol Standard Proposal Alliance PHY Overview
NTU Confidential Baseband Transceiver Design for the DVB-Terrestrial Standard Baseband Transceiver Design for the DVB-Terrestrial Standard Advisor : Tzi-Dar.
Doc.: IEEE /0075r0 Submission January 2004 H. Sampath, PhD, Marvell SemiconductorSlide 1 Pros and Cons of Circular Delay Diversity Scheme for.
NTUEE Confidential Toward MIMO MC-CDMA Speaker : Pei-Yun Tsai Advisor : Tzi-Dar Chiueh 2004/10/25.
Presented by: Sohaib Malik.  A radio whose functionality can be changed by changes in only the software  Key feature: ◦ Reprogramability ◦ Reusability.
OFDM Each sub-carrier is modulated at a very low symbol rate, making the symbols much longer than the channel impulse response. Discrete Fourier transform.
Submission doc.: IEEE /1088r0 September 2015 Daewon Lee, NewracomSlide 1 LTF Design for Uplink MU-MIMO Date: Authors:
Doc.: IEEE /0909r0 Submission July 2012 Jong S. Baek, AlereonSlide 1 Analysis, simulation and resultant data from a 6-9GHz OFDM MAC/PHY Date:
Doc.: IEEE /0075r1 Submission January 2004 H. Sampath, R. Narasimhan, Marvell SemiconductorSlide 1 Advantages and Drawbacks of Circular Delay.
Doc.: IEEE /1398r0 Submission November 2014 Slide 1 Shiwen He, Haiming Wang Preamble Sequence for IEEE aj (45GHz) Authors/contributors:
Doc.: IEEE /1014r0 Submission September 2004 Pangan Ting, CCL/ITRISlide 1 Partial Proposal for n: ITRI Preamble Specification Yung-Yih Jian,
Doc.: IEEE /0130r0 Submission January 2010 Yung-Szu Tu, et al., Ralink Tech.Slide 1 Proposed TGac Preamble Date: Authors:
1 Hierarchy on IEEE m Synchronization Channel IEEE Presentation Submission Template (Rev. 9) Document Number: IEEE C802.16m-08/1163 Date Submitted:
Doc.: IEEE /0929r1 Submission August 2004 Patrik Eriksson et. al., WaveBreaker ABSlide 1 A “High Throughput” Partial Proposal Patrik Eriksson,
Doc.: IEEE /0929r0 Submission August 2004 Patrik Eriksson et. al., WaveBreaker ABSlide 1 A “High Throughput” Partial Proposal Patrik Eriksson,
NTU Confidential Progress Report of a --- OFDM mode Advisor : Tzi-Dar Chiueh Student : Sang-Jung Yang Date : October 6 th, 2003.
Doc.: IEEE /0205r0 Submission Jan 2015 Shiwen He, Haiming Wang Slide 1 Time Domain Multiplexed Pilots Design for IEEE802.11aj(45 GHz) SC PHY Authors/contributors:
Doc.: IEEE /0779r0 Submission Guixia Kang, BUPT July 2010 VHT-LTF Design for IEEE802.11ac Slide 1 Date: Authors:
Doc.: IEEE /046r1 Submission January 2004 Tsuguhide Aoki, TOSHIBASlide 1 New preamble structure for AGC in a MIMO-OFDM system Tsuguhide Aoki,
Doc.: IEEE /0929r2 Submission September 2004 Patrik Eriksson et. al., WaveBreaker ABSlide 1 A “High Throughput” Partial Proposal Patrik Eriksson,
Doc.: IEEE /390 Submission November 2000 Mark Webster and Steve Halford, IntersilSlide 1 Reuse of b Preambles with HRb OFDM Mark Webster.
Doc.: IEEE /0363r2 Submission Pilot Value Definitions May 2012 Yongho Seok (LG Electronics), Hongyuan Zhang (Marvell)Slide 1 Date:
Doc.: IEEE /1014r2 Submission September 2004 Pangan Ting, CCL/ITRISlide 1 Partial Proposal for n: ITRI Preamble Specification Yung-Yih Jian,
Doc.: IEEE /0994r1 Submission July 2016 Intel CorporationSlide 1 EDMG STF and CEF Design for SC PHY in 11ay Date: Authors:
Doc.: IEEE /0632r1 Submission May 2016 Intel CorporationSlide 1 Performance Analysis of Robust Transmission Modes for MIMO in 11ay Date:
<month year> doc.: IEEE <04-106> March 2004
WUR Preamble SYNC Field Design
MIMO Supports for IEEE m Synchronization Channel
Effective (20us) Preambles for MIMO-OFDM
Signal Bandwidth and Sequence for OOK Signal Generation
Transmit processing: a viable scheme for MIMO-OFDM in n
Field Measurements of 2x2 MIMO Communications
Backwards compatibility
Preamble Sequence for aj(45GHz)
UWB Receiver Algorithm
Power Variations with WWiSE Cyclic Preamble Structures
WUR Dual SYNC Design Follow-up: SYNC bit Duration
Signal Bandwidth and Sequence for OOK Signal Generation
ETRI Proposal to IEEE TGn
Month Year doc.: IEEE yy/xxxxr0 January 2008
Partial Proposal for n: ITRI Preamble Specification
Phase Rotation for the 80 MHz ac Mixed Mode Packet
Signal Bandwidth and Sequence for OOK Signal Generation
Phase Rotation for the 80 MHz ac Mixed Mode Packet
<month year> doc.: IEEE <04-106> March 2004
Carrier Frequency / Symbol Clock Offset Proposal for TGn FRCC
Performance Investigation on Wake-Up Receiver
Preambles for MIMO channel estimation
20us effective preambles for MIMO-OFDM
Strawmodel ac Specification Framework
HNS Proposal for n Physical Layer
20us effective preambles for MIMO-OFDM
Signal Bandwidth and Sequence for OOK Signal Generation
Compressed Midamble in NGV
Presentation transcript:

doc.: IEEE /794r1 Submission Slide 1 André Bourdoux (IMEC) July 2004 Preambles for MIMO channel estimation André Bourdoux Bart Van Poucke Liesbet Van der Perre IMEC, Wireless Research

doc.: IEEE /794r1 Submission Slide 2 André Bourdoux (IMEC) July 2004 Motivation MIMO-OFDM is key to achieve 100 Mbps at the MAC SAP Conventional SISO preamble (11.a, g) is not sufficient MIMO channel estimation requires a new preamble

doc.: IEEE /794r1 Submission Slide 3 André Bourdoux (IMEC) July 2004 SISO Preamble (1) STS used for  AGC, Packet detection(Power measurement)  Coarse timing acquisition(Auto-correlation)  Coarse Carrier freq. acquisition(Auto-correlation) SISO Preamble BBBBBBBBBB CP CC SIG CP Data LTSSTS LTS used for  Fine timing acquisition(Auto/cross-correlation)  Fine Carrier freq. acquisition(Auto-correlation)  Channel estimation(direct, least-square)  IQ imbalance estimation(specific algorithm)

doc.: IEEE /794r1 Submission Slide 4 André Bourdoux (IMEC) July 2004 SISO Preamble (2)  Desirable properties for STS  Short periodicity: CFO acquisition range = 1/2T B =  625 kHz  Long periodicity: > max excess delay (T B = 800 ns  240 m.)  Low PAPR  Desirable properties for LTS  Low auto-correlation sidelobes  Double-length CP to accommodate coarse timing estimation  repeated C sequence allows  Long auto-correlation for accurate CFO estimation  3 dB SNR improvement for Channel estimation input data  Low PAPR

doc.: IEEE /794r1 Submission Slide 5 André Bourdoux (IMEC) July 2004 MIMO Preamble Requirements:  SISO requirements:  AGC, packet detection  CFO estimation  Timing estimation  MIMO requirements  Detect number of TX antennas (N T )  On each RX antenna, differentiate and Estimate N T channels from one received signal  Low cross-correlation between TX antenna signals  Legacy requirements  When N T =1, compatible with SISO transmission (11a,g)

doc.: IEEE /794r1 Submission Slide 6 André Bourdoux (IMEC) July 2004 Assumptions for MIMO preamble  Reuse of SISO preamble (STS, LTS, SIG) for legacy  Coarse/fine timing and CFO is achieved before channel estimation  AGC from TX1 only cannot be reused, second AGC needed  # TX antennas is known before channel estimation  AGC is settled before channel estimation  CP for MIMO channel estimation can be 16 samples long  Total energy available per “SISO” channel is constant STS TX 1 TX 2 TX 3 TX 4 Data 2 Data 3 Data 1 Data 4 LTSSIGSIG2STS1LTS1 LTS2 LTS3 LTS4 Legacy preamble - # TX antennas - MIMO mode - … - Second AGC- Multi TX antenna Channel estimation STS2 STS3 STS4

doc.: IEEE /794r1 Submission Slide 7 André Bourdoux (IMEC) July 2004 Orthogonality between TX antennas  We focus on the part of the preamble for Multi-TX antenna channel estimation  LTS sequences from different TX antennas must be differentiated  LTS sequences can be made orthogonal in -Time:TDM -Frequency:FDM -Code:CDM -Hybrid (for N T > 2):TDM-FDM TDM-CDM FDM-CDM

doc.: IEEE /794r1 Submission Slide 8 André Bourdoux (IMEC) July 2004 TDM preamble LTS CP C CData 1 2 x 3.2 µs0.8 µs TX 1 TX 2 Data 2 CP C C C 2 x 3.2 µs0.8 µs TX 1 TX 2 TX 3 Data 2 Data 3 Data 1 CP C C C C 2 x 3.2 µs0.8 µs TX 1 TX 2 TX 3 TX 4 Data 2 Data 3 Data 1 Data 4

doc.: IEEE /794r1 Submission Slide 9 André Bourdoux (IMEC) July 2004 TDM preamble  Minimum duration: N T x (16+128) samples  N T x 7.2µs  Processing (per RX antenna):  Estimate = measurement: N T x SISO Channel estim.  Least square : smoothes freq-domain channel estimate with time-domain constraint; N T x 2 x N c x L complex MACs  Reuse of existing blocks (IP)  Allows IQ Imbalance compensation based on preamble  Requires higher average power per antenna during LTS  10log 10 (N T ) dB more TX power per TX antennas  RX AGC is a problem (1 TX antenna active at a time)  AGC values must be the same as during payload transmission

doc.: IEEE /794r1 Submission Slide 10 André Bourdoux (IMEC) July 2004 FDM preamble 2 x 3.2 µs0.8 µs C1 C2 C3 CP C3 CP C2 CP C1Data 1 Data 2 Data 3 TX 1 TX 2 TX 3 C1 CP C1 2 x 3.2 µs0.8 µs C1 C2 C3 C4 CP C4 CP C3 CP C2Data 2 Data 3 Data 1 Data 4 TX 1 TX 2 TX 3 TX 4 TX 1 TX 2 2 x 3.2 µs0.8 µs C1 C2 CP C2 CP C1Data 1 Data 2

doc.: IEEE /794r1 Submission Slide 11 André Bourdoux (IMEC) July 2004 FDM preamble  Different subsets of sub-carriers used on the TX antennas  For 52 sub-carriers and 4 TX antennas, only 13 sub-carriers per training symbol. … … IFFT C1 C2 IFFT TX 1 TX 2 ………

doc.: IEEE /794r1 Submission Slide 12 André Bourdoux (IMEC) July 2004 FDM preamble  Minimum duration: 1x(16+128) samples  1x 7.2µs  Duration for same energy as TDM: 16 + N T x128 samples  N T x6.4µs  Processing (per RX antenna):  Freq domain interpolator: sensitivity to phase slope  Least square : 2 x N C x (N T + 1) complex MACs  Same average RX power as during payload reception

doc.: IEEE /794r1 Submission Slide 13 André Bourdoux (IMEC) July 2004 CDM preamble LTS CP -C CP CData 1 2 x 3.2 µs0.8 µs TX 1 TX 2 Data 2 CP C C C C C C 2 x 3.2 µs0.8 µs TX 1 TX 2 TX 3 TX 4 Data 2 Data 3 Data 1 Data 4 CP C C C C C C -C CP -C CP -C CP -C CP -C CP -C CP C C C 2 x 3.2 µs0.8 µs TX 1 TX 2 TX 3 Data 2 Data 3 Data 1 CP C C C C C -C CP -C CP -C CP -C

doc.: IEEE /794r1 Submission Slide 14 André Bourdoux (IMEC) July 2004 CDM preamble  Minimum duration: 2 TX: 2x(16+128) samples  2 x 7.2µs 3 or 4 TX: 4x(16+128) samples  4 x 7.2µs  Processing (per RX antenna):  Complex additions/substractions for “despreading”  The rest is same as TDM  Same average RX power as during payload reception  LTS for N T =3 must be same length as for N T =4

doc.: IEEE /794r1 Submission Slide 15 André Bourdoux (IMEC) July 2004 TDM-FDM preamble CP C2 CP C1 2 x 3.2 µs0.8 µs TX 1 TX 2 TX 3 TX 4 Data 2 Data 3 Data 1 Data 4 C1 CP C2 CP C1 C2 C1 C2  Duration for 4 TX antennas: 2x(16+256) samples  2 x 13.6µs  Processing (per RX antenna ):  Least square for the FDM part, the rest is same as TDM  Problem of average RX power (in TDM) not completely eliminated

doc.: IEEE /794r1 Submission Slide 16 André Bourdoux (IMEC) July 2004 CP C C C 2 x 3.2 µs0.8 µs TX 1 TX 2 TX 3 TX 4 Data 2 Data 3 Data 1 Data 4 CP C -C CP -C CP -C CP -C  Duration for 4 TX antennas: 4x(16+128) samples  4 x 7.2µs  Processing (per RX antenna ):  Complex additions/substractions for “despreading”  The rest is same as TDM  Problem of average RX power (in TDM) not completely eliminated TDM-CDM preamble

doc.: IEEE /794r1 Submission Slide 17 André Bourdoux (IMEC) July 2004 FDM-CDM preamble CP C2 CP C1 2 x 3.2 µs0.8 µs TX 1 TX 2 TX 3 TX 4 Data 2 Data 3 Data 1 Data 4 C1 CP -C2 CP -C1 C2 -C1 -C2 CP C2 CP C1 C2 CP C2 CP C1 C2  Duration for 4 TX antennas: 2x(16+256) samples  2 x 13.6µs  Processing (per RX antenna ):  Complex additions/substractions for “despreading”  The rest is same as TDM  Can also be used for N T =3

doc.: IEEE /794r1 Submission Slide 18 André Bourdoux (IMEC) July 2004 Performance of the various preambles  In principle, TDM and CDM have the same performance  FDM performance degrades for N T =4 because of coarser frequency sampling  Simulations show Channel Estimation Mean-squared Error for preamble options and N T =2, 4  In all simulations  total power / N T is constant  total energy / N T is constant (except for CPs)

doc.: IEEE /794r1 Submission Slide 19 André Bourdoux (IMEC) July 2004 Channel estimation error, N T =2 Impact of zero- carriers on least- square Worse estimation without least- square

doc.: IEEE /794r1 Submission Slide 20 André Bourdoux (IMEC) July 2004 Channel estimation error, N T =4 Impact of zero- carriers on least- square Impact of coarse frequency sampling (FDM) Worse estimation without least- square CDM-FDM: Best performance no problem with AGC

doc.: IEEE /794r1 Submission Slide 21 André Bourdoux (IMEC) July 2004 Our advice for n  Several preamble structures are possible for MIMO channel estimation  Preambles with simultaneous transmission from all TX antennas are mandatory  no problem from AGC  Least-square solution provides better estimate, is mandatory for FDM-based preambles