Switch-Mode Regulators Buck Regulator Boost Regulator Buck-Boost Regulator Cúk Regulator Buck Regulator vgvg vovo RoRo C L VsVs isis iLiL icic i0i0 iDiD.

Slides:



Advertisements
Similar presentations
RANGAKAIAN DIODA Hamzah Afandi, Antonius Irianto dan Betty Savitri Sources: Millman, Jacob, Grabel, Arvin, Microelectronics, Mc. Graw Hill Int. Ed., 1994.
Advertisements

Solutions of Homework problems. Resistive circuits Problem 1 Use KVL and Ohms law to compute voltages v a and v b v2v v1v1 From Ohms.
Electricity & Circuits: An introduction for neuroscientists.
Chapter 2 AC to DC CONVERSION (RECTIFIER)
7. Introduction to DC/DC Converters
Introduction to DC-DC Conversion – Cont.
DC-DC Converters (choppers) The objective is to convert a fixed DC voltage to a variable DC voltage It is possible to step up and step down voltage.
CIRCUITS, DEVICES, AND APPLICATIONS Eng.Mohammed Alsumady
1 Switched Capacitor Circuits for DC-DC Conversion Chi Law Matthew Senesky Nov. 25, 2003.
First Order Circuit Capacitors and inductors RC and RL circuits.
Week 6aEECS40, Spring 2005 Week 6a OUTLINE Op-Amp circuits continued: examples Inverting amplifier circuit Summing amplifier circuit Non-inverting amplifier.
Lectures Week 8 The operational amplifier (“op amp”) Feedback
DC-DC Switch-Mode Converters
Instrumentation & Power Electronics
Buck Converter + V in - + V OUT - Assumptions for First Order Analysis: All components are ideal, including voltage source Output ripple voltage is negligible.
Switching Converter Boost Converter Buck/Boost Converter Buck Converter + V IN - + V OUT - I IN IOIO.
Power Electronics Notes 07A Introduction to DC/DC Converters
ECE 340 ELECTRONICS I OPERATIONAL AMPLIFIERS. OPERATIONAL AMPLIFIER THEORY OF OPERATION CHARACTERISTICS CONFIGURATIONS.
Control and Engineering Issues
ILiL 11 I L = I o TSTS D m2m2 m1m1 Buck Converter – Discontinuous Conduction 22.
Switching Power Supplies Week 6
CHAPTERS 7 & 8 CHAPTERS 7 & 8 NETWORKS 1: NETWORKS 1: December 2002 – Lecture 7b ROWAN UNIVERSITY College of Engineering Professor.
Tema 2: Teoría básica de los convertidores CC/CC (I)
SECOND ORDER CIRCUIT. Forced Response of Parallel RLC Circuit (Step response Parallel RLC Circuit) Second order circuit When switch is open, a STEP current.
A Unified Model for the ZVS DC-DC Converters With Active Clamp
BY N.S.SRIVATCHAN ASSISTANT PROFESSOR EEE DEPT
SWITCH-MODE POWER SUPPLIES AND SYSTEMS Silesian University of Technology Faculty of Automatic Control, Electronics and Computer Sciences Ryszard Siurek.
1 SEA_uniovi_CC1_00 Lección 4 Teoría básica de los convertidores CC/CC (I) (convertidores con un único transistor) Diseño de Sistemas Electrónicos de Potencia.
Alternate interpretation for Exercises 3.35 thru 3.37 These exercises are based on the assumption that the converters are operating in DCM with a fixed.
Comparing two ways to find loop gain in feedback circuits Rob Fox University of Florida.
0 Chap. 3 Diodes Simplest semiconductor device Nonlinear Used in power supplies Voltage limiting circuits.
Chapter 4 Second Order Circuit (11th & 12th week)
1 5. SOURCES OF ERRORS Fundamentals of low-noise design 5.5. Fundamentals of low-noise design.
1 Identify Critical Path Buck Converter Boost Converter Buck-Boost Converter Critical path Switching Current exist in the input side.
TECHNIQUES OF DC CIRCUIT ANALYSIS: SKEE 1023
ECE 352 Electronics II Winter 2003 Ch. 8 Feedback 1 *Feedback circuit does not load down the basic amplifier A, i.e. doesn’t change its characteristics.
CHAPTERS 6 & 7 CHAPTERS 6 & 7 NETWORKS 1: NETWORKS 1: October 2002 – Lecture 6b ROWAN UNIVERSITY College of Engineering Professor.
Rowan Hall 238A September 18, 2006 Networks I for M.E. ECE James K. Beard, Ph.D.
1 Amplifiers. Equivalent Circuit of a Voltage Amplifier G vo V i IoIo RoRo VoVo ViVi RiRi IiIi Amplifier ViVi VoVo (a) Black Box Representation.
A NOVEL CONTROL METHOD OF DC-DC CONVERTERS Dr.M.Nandakumar Professor Department of Electrical engineering Govt. Engineering College Thrissur 1 Dept. of.
Prof R T Kennedy 1 EET 423 POWER ELECTRONICS -2. Prof R T Kennedy2 BUCK CONVERTER CIRCUIT CURRENTS I fwd I ds E i n I i n ILIL I ds ICIC I fwd C R L ILIL.
Prof R T Kennedy 1 EET 423 POWER ELECTRONICS -2. Prof R T Kennedy2 BUCK CONVERTER CIRCUIT CURRENTS I fwd I ds E i n I i n ILIL I ds ICIC I fwd C R L ILIL.
SWITCH-MODE POWER SUPPLIES AND SYSTEMS Silesian University of Technology Faculty of Automatic Control, Electronics and Computer Sciences Ryszard Siurek.
Linear Power Supplies, Switched Mode Power Supply
Introduction to DC-DC Conversion – Cont.
MALVINO Electronic PRINCIPLES SIXTH EDITION.
Op Amp Applications 1EEE 3308 Analyses for A ∞ and loop gain are separate. Design breaks down into two parts: - Arranging A ∞ to do the job - Ensuring.
Prof R T KennedyPOWER ELECTRONICS 21 EET 423 POWER ELECTRONICS -2.
1 Practice Problem The periodic waveform shown is applied to a 100Ω resistor. What value of α yields 50W average power to the resistor? α is the “duty.
1 Announcements 1. Course assistant reception day in the next week: Monday instead of Sunday.
7. Design of BJT, Op. Amp., IC Regulated Power Supplies
1 5. SOURCES OF ERRORS Fundamentals of low-noise design 5.5. Fundamentals of low-noise design.
Op-amp used as a summing amplifier or adder It is possible to apply more than one input signal to an inverting amplifier. This circuit will then add all.
CHAPTER 5 DC TRANSIENT ANALYSIS.
University Federico II Dept of Electronics and Telecommunications Paolo Spirito Power Semiconductor Devices 1 Review of basic of power amplifiers for analog.
基 督 再 來 (一). 經文: 1 你們心裡不要憂愁;你們信神,也當信我。 2 在我父的家裡有許多住處;若是沒有,我就早 已告訴你們了。我去原是為你們預備地去 。 3 我 若去為你們預備了地方,就必再來接你們到我那 裡去,我在 那裡,叫你們也在那裡, ] ( 約 14 : 1-3)
S : Source O : Observer V : velocity of the wave v O vovo S vsvs v vsvs v O vovo S v vsvs v vovo S v O DOPPLER EFFECT.
Small Signal – Low Frequency Transistor amplifier Circuits UNIT-IV.
D I s , a ·.... l8l8.
A function f is increasing on an open interval I if, for any choice of x1 and x2 in I, with x1 < x2, we have f(x1) < f(x2). A function f is decreasing.
Слайд-дәріс Қарағанды мемлекеттік техникалық университеті
.. -"""--..J '. / /I/I =---=-- -, _ --, _ = :;:.
I ll I
II //II // \ Others Q.
I1I1 a 1·1,.,.,,I.,,I · I 1··n I J,-·
DC-DC Switch-Mode Converters
' 1 A ./.\.l+./.\.l
Dr. Unnikrishnan P.C. Professor, EEE
. '. '. I;.,, - - "!' - -·-·,Ii '.....,,......, -,
Chapter 5 Isolated Switch-Mode dc-to-dc Converters
Presentation transcript:

Switch-Mode Regulators Buck Regulator Boost Regulator Buck-Boost Regulator Cúk Regulator Buck Regulator vgvg vovo RoRo C L VsVs isis iLiL icic i0i0 iDiD

vgvg t KT 0 TT+KT 2T KT 0 TT+KT 2T iLiL t i Lmax i Lmin KT 0 T T+KT 2T t ioio icic t KT 0 TT+KT 2T vovo ∆v o For 0 ≤ t ≤ KT v s – v o = L ∆ i L / (KT) assuming that v o ≈ constant then, ∆ i L = K (v s – v o ) / (f L) …..(1) where ∆ i L = i Lmax - i Lmin For KT ≤ t ≤ T -v o = L ( - ∆ i L /(T-KT) ∆ i L = v o (1-K) / (f L) …..(2) equating (1) and (2), then, K (v s – v o ) / (f L) = v o (1-K) / (f L) then, V o = K V s where V o is the average value of v o Another method; Noting that i s = i L in the interval 0 ≤ t ≤ KT KT 0 T T+KT 2T isis i Lmax i Lmin ioio (exaggerated!) then, I s = K i o noting that Vs Is = Vo Io and, V o = K V s VoVo K 0 1 VsVs

I c is the average rectified value of i c I c = ½ T/2 ∆I L /2 = ⅛ ∆I L /f ∆ V o = 1/C. I c = ∆I L / (8fC) = v o (1-K) / (8f 2 LC) Boost Regulator vgvg vovo RoRo C L VsVs isis iDiD icic i0i0 For 0 ≤ t ≤ KT mode 1 vgvg t KT 0 TT+KT 2T vgvg VsVs isis vovo RoRo icic i0i0

KT 0 TT+KT 2T isis t i smax i smin IsIs KT 0 T T+KT 2T t iCiC mode (2) For KT ≤ t ≤ T vovo RoRo C VsVs isis iDiD icic i0i0 IoIo isis KT 0 TT+KT 2T t vovo ∆v o For 0 ≤ t ≤ KT V s = L ∆ i s / (KT) ∆ i s = KV s /(fL) …(1) For KT ≤ t ≤ T V s – V o = - L ∆ i s /(T-KT) ∆ i s = (1 – K) (V o – V s ) / (fL) …(2) then, K V s = (1 – K) (V o – V s ) Vo = Vs / (1 – K) I o. K T = (I s –I o ). ( T – KT) then, I s = I o / (1-K) ∆ V o = 1/C. (I o. KT) ∆ V o = K I o / f C K VoVo 01 VsVs 0.5 2V s !

Buck-Boost Regulator vgvg vovo RoRo C L VsVs isis iDiD icic i0i0 iLiL for 0 ≤ t ≤ KT L VsVs isis iLiL vovo RoRo i0i0 C icic Mode 1 V s = L ∆ i L / KT ∆ i L = K Vs / (f L) t KT 0 TT+KT 2T vgvg KT 0 TT+KT 2T iLiL t i Lmax i Lmin ioio KT 0 T T+KT 2T t i Lmax i Lmin KT 0 T T+KT 2T t i Lmax i Lmin ioio I s K = I o (1 – K) I s = K / (1-K). I o

vovo RoRo C L iDiD icic i0i0 iLiL For KT ≤ t ≤ T mode 2 KT 0 T+KT t iCiC T 2T KT 0 T+KT t T 2T vCvC VoVo K VsVs !

Ćuk Regulator vovo RoRo C1C1 L2L2 VsVs isis i L2 icic i0i0 iDiD vgvg L1L1 2C2C vgvg t KT 0 TT+KT 2T vovo RoRo C1C1 L2L2 VsVs i L1 icic i0i0 L1L1 2C2C Mode 1 For 0 ≤ t < KT + _ i L2

vovo RoRo C1C1 L2L2 VsVs i L1 icic i0i0 L1L1 2C2C + _ i L2 Mode 2 For KT ≤ t < T For 0 ≤ t < KT V s = L 1 ∆ I L1 /(KT) (1) ∆ I L1 = K Vs /(fL 1 ) For KT≤ t < T V s – V C1 = - L 1 ∆ I L1 /(1-K)T (2) Substituting from (1) into (2), V s – V C1 = - K /(1-K) V s V C1 =[(1 + K/(1-K) ] V s V C1 = V s /(1-K) For 0 ≤ t < KT V C1 – V o = L 2 ∆ I L2 /(KT) (3) For KT≤ t < T -V o = - L 2 ∆ I L2 /(1-K)T (4) Substituting from (3) into (4), – V o = - K ( V C1 – V o ) / (1-K) V o = K V C1 V o = K/(1-K) V s

for 0 < t ≤ KT V c1 – V o = L 2 ∆I L2 / (KT) ∆I L2 = K ( V C1 – V o ) / (fL 2 ) ∆I L2 = K [ Vs /(1-K) – KVs /(1-K) ] / (fL 2 ) ∆I L2 = K V s / fL 2 t i L1 i L1max i L1min t i L2 i L2max i L2min KT T T v c1 t i C1 i L2max i L2min KT T -i L1max -i L1min IoIo IoIo t KT T ∆v C1 (exaggerated!)

V s I s = V o I o V s I s = K V s /(1-K). I o I s = K/(1-K). I o ∆ v C1 = 1/C 1. ∫ i C1 dt = I o T K/C 1 ∆ v C1 = K I o /(fC 1 ) ∆ v o = 1/C 2. ∫ i C2 dt = 1/C 2. ½. T/2. ½ ∆I L2 ∆ v o = K V s / (8f 2 C 2 L 2 ) i C2 t KT T T+KT 2T t vovo ∆V o (exaggerated!)