Hadron Physics @ Klaus Peters Ruhr-Universität Bochum Santiago de Campostela, Oct 27, 2003
The Panda Physics Program Overview The Panda Physics Program Charmonium spectroscopy Charmed hybrids and glueballs Interaction of charmed particles with nuclei (Double) Hypernuclei Many further options Detector Concepts for Panda Conclusions K. Peters - Hadron Physics @ Panda
QCD running coupling constant transition from perturbative to non-perturbative regime Q2 [GeV2] 10 1 0.1 0.05 perturbative QCD constituent quark confinement mesons and baryons 0.3 Rn r [fm] perturbative strong QCD Transition from the quark-gluon to the hadronic degrees of freedom K. Peters - Hadron Physics @ Panda
Objects of Interest SU(3)C Symmetry tells us that q3i+nq3j+ngk is color neutral i=1 j,n,k=0 baryon (B=i-j) i,j,k=0 n=1 meson i,j,n=0 k>1 glueball i,j=0 n=1 k>0 meson hybrid i=1 j,n=0 k>0 baryon hybrid i,n=1 j,k=0 penta quark i,j,k=0 n=2 four quark i,j,k=0 n=3 / i,j=3 k,n=0 baryonium (hexa quark) K. Peters - Hadron Physics @ Panda
Objects of Interest Mesons/Baryons Molecules/Multiquarks Hybrids AntiQuark Mesons/Baryons Molecules/Multiquarks Hybrids Glueballs + Effects due to the complicated QCD vacuum K. Peters - Hadron Physics @ Panda
Light Meson Spectrum Lattice 1-+ 1.9 GeV 0++ 1.6 GeV exotic nonets qq Mesons Each box corresponds to 4 nonets (2 for L=0) Radial excitations 2–+ 2.5 0–+ Hybrids 2++ 2+– 2–+ 1–– 2.0 1–+ exotic nonets Glueballs 1+– 1++ 1.5 Lattice 1-+ 1.9 GeV 0+– 0–+ 0++ 1.0 0++ 1.6 GeV L = 0 1 2 3 4 (L = qq angular momentum) K. Peters - Hadron Physics @ Panda
Level Mixing Mixing (Light Quark) Better: Experimental approach: broad states high level density Better: narrow states and/or lower level density charmed systems ! Experimental approach: Charm physics: Transition chiral to heavy quark limits Proton-Antiproton: rich hadronic source K. Peters - Hadron Physics @ Panda
Charmonium Physics Open questions … … Exclusive Channels hc – inconsistencies hc’ - y(2S) splitting h1c (1P1) unconfirmed Peculiar decays of y(4040) Terra incognita for any 2P and D-States … Exclusive Channels Helicity violation G-Parity violation Higher Fock state contributions K. Peters - Hadron Physics @ Panda
Charmonium Physics e+e- interactions: cc1 pp reactions: Only 1-- states are formed Other states only by secondary decays (moderate mass resolution) pp reactions: All states directly formed (very good mass resolution) 3500 3520 MeV 3510 CBall ev./2 MeV 100 ECM CBall E835 cc1 1000 E 835 ev./pb K. Peters - Hadron Physics @ Panda
Resonance Cross Section Resonance Scan ECM Resonance Cross Section Measured Rate Beam Profile small and well controlled beam momentum spread Dp/p is extremely important K. Peters - Hadron Physics @ Panda
Charmonium Physics with pp Expect 1-2 fb-1 (like CLEO-C) pp (>5.5 GeV/c) ® J/y 107/d pp (>5.5 GeV/c) ® cc2 (® J/y g) 105/d pp (>5.5 GeV/c) ® hc‘(® ff) 104/d|rec.? Comparison of PANDA@HESR to E835 Maximum energy 15 GeV/c instead of 9 GeV/c Luminosity 10x higher Detector with magnetic field – charged final states Dp/p 10x better Dedicated machine with stable conditions K. Peters - Hadron Physics @ Panda
Charmed Hybrids Gluonic excitations of the quark-antiquark-potential may lead to bound states LQCD: P-potential of excited gluon flux in addition to S-potential for one-gluon exchange mHc ~ 4.2-4.5 GeV/c2 Light charmed hybrids could be narrow if open charm decays are inaccessible or suppressed P S important <r2> and rBreakup K. Peters - Hadron Physics @ Panda
S-Wave+Gluon (qq)8g with ()8=coloured 1S0 ¯ 3S1 Simplest Hybrids S-Wave+Gluon (qq)8g with ()8=coloured 1S0 ¯ 3S1 combined with a 1+ or 1- gluon Gluon 1– (TM) 1+(TE) 1S0, 0–+ 1++ 1–– 3S1, 1–– 0+- 0–+ 1+- 1–+ 2+- 2–+ Meson – Hybrid Mixing q g MIX g FSI Exotic JPC cannot! be formed by qq K. Peters - Hadron Physics @ Panda
Charmed Hybrid Level Scheme 1-- (0,1,2)-+ < 1++ (0,1,2)+- JKM00, NPB83Suppl83(2000)304 and Manke, PRD57(1998)3829 L-Splitting Dm ~ 100-250 MeV/c2 for 1-+ to 0+- S-Splittings Page thesis,1995 and PRD35(1987)1668 4.14 (0-+ ) to 4.52 GeV/c2 (2-+) consistent w/LQCD JKM, NPB86suppl(2000)397, PLB478(2000) 151 0+- 4.47 1+- 4.70 2+- 4.85 1++ 4.81 4.8 4.7 4.6 0-+ 4.14 1-+ 4.37 2-+ 4.52 1-- 4.48 4.5 4.4 4.3 DD** 4.2 4.1 K. Peters - Hadron Physics @ Panda
Charmed Hybrid Level Scheme 1-- (0,1,2)-+ < 1++ (0,1,2)+- JKM00, NPB83Suppl83(2000)304 and Manke, PRD57(1998)3829 L-Splitting Dm ~ 100-250 MeV/c2 for 1-+ to 0+- S-Splittings Page thesis,1995 and PRD35(1987)1668 4.14 (0-+ ) to 4.52 GeV/c2 (2-+) consistent w/LQCD JKM, NPB86suppl(2000)397, PLB478(2000) 151 0+- 1+- 2+- 1++ 4.8 4.7 4.6 0-+ 1-+ 2-+ 1-- 4.5 4.4 4.3 DD** 4.2 4.1 K. Peters - Hadron Physics @ Panda
Proton-Antiproton @ Rest/Flight Production all JPC available Formation only selected JPC Gluon rich process creates gluonic excitation in a direct way cc requires the quarks to annihilate (no rearrangement) yield comparable to charmonium production formation yield 8:1 due to colour octet in hybrids K. Peters - Hadron Physics @ Panda
Proton-Antiproton @ Rest/Flight Production p _ G M p M H _ p M H _ all JPC available Formation p _ G p _ H p _ H only selected JPC Gluon rich process creates gluonic excitation in a direct way cc requires the quarks to annihilate (no rearrangement) yield comparable to charmonium production formation yield 8:1 due to colour octet in hybrids Momentum range for a survey pp ® ~15 GeV K. Peters - Hadron Physics @ Panda
Exotics in Proton-Antiproton Exotics are heavily produced in pp reactions High production yields for exotic mesons (or with a large fraction of it) f0(1500)p ® ~25 % in 3p0 f0(1500)p ® ~25 % in 2hp0 p1(1400)p ® >10 % in p±p0h Crystal Barrel Interference with other well known (conventional) states is mandatory for the phase analysis K. Peters - Hadron Physics @ Panda
Open charm discoveries The DS± Spectrum |cs> +c.c. was not expected to reveal any surprises, but chiral and heavy quark aspects meet Potential model Old measurements New observations m [GeV/c2] Ds1 Ds2 D*K DsJ (2458) D0K # 1267 53 Events in peak DsJ* (2317) Ds* Combinatorial DS*+ g DS*+(2112) DsJ*(2317) Ds BABAR 0- 1- 0+ 1+ 2+ 3- JP K. Peters - Hadron Physics @ Panda
Heavy Glueballs Light gg/ggg-systems are complicated to identify (mixing!) Exotic heavy glueballs m(0+-) = 4140(50)(200) MeV m(2+-) = 4740(70)(230) MeV Width unknown, but! nature invests more likely in mass than in momentum newest proof: double cc yield in e+e- Flavour-blindness predicts decays into charmed final states too Same run period as hybrids In addition: scan m>2 GeV/c2 Morningstar und Peardon, PRD60 (1999) 034509 Morningstar und Peardon, PRD56 (1997) 4043 K. Peters - Hadron Physics @ Panda
Accessible cc-Hadrons at PANDA @ HESR @ GSI mass and phase space of recoil meson for exotic JPC included conventional charmonium Other exotics with identical decay channels ® same region K. Peters - Hadron Physics @ Panda
Charmed Hadrons in Nuclear Matter Partial restoration of chiral symmetry in nuclear matter Light quarks are sensitive to quark condensate Evidence for mass changes of pions and kaons has been deduced previously: deeply bound pionic atoms (anti-)kaon yield and phase space distribution D-Mesons are the QCD analogue of the H-atom. chiral symmetry to be studied on a single light quark vacuum nuclear medium p K 25 MeV 100 MeV K+ K- p- p+ Hayaski, PLB 487 (2000) 96 Morath, Lee, Weise, priv. Comm. D- 50 MeV D D+ K. Peters - Hadron Physics @ Panda
Open Charm in the Nuclei The expected signal: strong enhancement of the D-meson cross section, relative D+ D- yields, in the near/sub-threshold region. Complementary to heavy ion collisions T~0 in-medium free masses bare D+D- 10-2 10-1 1 10 102 103 s(nb) 4 5 6 7 D- spA spA (A) = ? AspN AspN D+ T (GeV) K. Peters - Hadron Physics @ Panda
Charmonium in the Nuclei GeV/c2 Mass Lowering of the D+D- mass allow charmonium states to decay into this channel, thus resulting in a dramatic increase of width y(1D) Γ=20®40 MeV y(2S) Γ=0,32®2,7 MeV Experiment: Dilepton-Channels and/or highly constrained hadronic channels Idea Study relative changes of yield and width of the charmonium states. y(33S1) 4 3.8 y(13D1) 3,74 3,64 3,54 vacuum 1r0 2r0 y(23S1) 3.6 cc2(13P2) cc1(13P1) 3.4 cc1(13P0) 3.2 y(13S1) hc(11S0) 3 K. Peters - Hadron Physics @ Panda
J/y Absorption in Nuclei Important for the understanding of heavy ion collisions Related to QGP p K. Peters - Hadron Physics @ Panda
J/ψ Absorption in Nuclei Important for the understanding of heavy ion collisions Related to QGP Reaction p + A J/ψ + (A-1) Fermi-smeared cc-Production J/ψ, ψ’ or interference region selected by p-Momentum Longitudinal und transverse Fermi-distribution is measurable J/y s(e+e-) pb p(pbar) GeV/c 200 100 3.5 4.5 4.0 5.0 FF J/y K. Peters - Hadron Physics @ Panda
Further Experiments and Optional extensions Hypernuclear physics 3rd dimension of nuclear chart Focus: Double Hypernuclei Inverted DVCS - WACS Measure dynamics of quarks and gluons in a hadron Handbag diagram – electromagnetic final states Proton Formfactors at large Q2 s up to 25 GeV2/c4 D(S)-Physics Spectroscopy: Threshold production BR and decay dalitz plots with high statistics CP-Violation in the D-Sector K. Peters - Hadron Physics @ Panda
The Antiproton Facility K. Peters - Hadron Physics @ Panda
The Antiproton Facility Antiproton production similar to CERN, HESR = High Energy Storage Ring Production rate 107/sec Pbeam = 1.5 - 15 GeV/c Nstored = 5 x 1010 p Gas-Jet/Pellet/Wire Target High luminosity mode Luminosity = 2 x 1032 cm-2s-1 Dp/p ~ 10-4 (stochastic cooling) High resolution mode Dp/p ~ 10-5 (electron cooling) Luminosity = 1031 cm-2s-1 K. Peters - Hadron Physics @ Panda
Proposed Detector (Overview) High Rates Total σ ~ 55 mb Vertexing (σp,KS,Λ,…) Charged particle ID (e±,μ±,π±,p,…) Magnetic tracking Elm. Calorimetry (γ,π0,η) Forward capabilities (leading particles) Sophisticated Trigger(s) K. Peters - Hadron Physics @ Panda
Participating Institutes (with Representative in the Coordination Board) 42 Institutes (35 Locations) from 9 Countries: Austria - Germany – Italy – Netherlands – Poland – Russia – Sweden – U.K. – U.S. U Oriente, Alessandria U Bochum U Bonn U & INFN Brescia U Catania U Cracow GSI Darmstadt TU Dresden JINR Dubna I + II U Edinburgh U Erlangen NWU Evanston U & INFN Ferrara U Frankfurt LNF-INFN Frascati U & INFN Genova U Glasgow U Gießen KVI Groningen IKP Jülich I + II U Katowice U Mainz TU München U Münster BINP Novosibirsk U Pavia U of Silesia U Stockholm U Torino Politechnico di Torino U & INFN Trieste U Tübingen U & TSL Uppsala IMEP Vienna SINS Warsaw K. Peters - Hadron Physics @ Panda
Competition BES, BNL, CLEO-C, DaΦne, Hall-D, JHF Topic Competitor Confinement Charmonium all cc states with high resolution CLEO-C only 1–– states Gluonic Excitations charmed hybrids heavy glueballs CLEO-C light glueballs Hall-D light hybrids Nuclear Interactions D-mass shift J/ψ absorption (T~0) DaΦne K-mass shift Hypernuclei γ-spectroscopy of Λ- and ΛΛ–hypernuclei BNL indirect evidence only JHF single HN Open Charm Physics Rare D-Decays CP-physics in Hadrons CLEO-C rare D-Decays CP-physics in D-Mesons ν,K-beams JHF rare K-Decays (?) neutrino physics K. Peters - Hadron Physics @ Panda
high resolution spectroscopy with p-beams in formation experiments: Why Antiprotons ? high resolution spectroscopy with p-beams in formation experiments: ΔE ΔEbeam high yields of gluonic excitations in pp glueballs, charmed hybrids event tagging by pair wise associated production, (particle, anti-particle) e.g. ppDD large √s at low momentum transfer important for in-medium "implantation" of hadrons: study of in-medium effects of charmed states K. Peters - Hadron Physics @ Panda
The antiproton facility HESR @ GSI addresses many important questions Summary & Outlook Investigation of charmed hadrons and their interaction with matter is a mandatory task for the next decade The antiproton facility HESR @ GSI addresses many important questions A high performance storage ring and detector are envisaged to utilize a luminosity of L=2∙1032 cm-2s-1 K. Peters - Hadron Physics @ Panda