Hadron Physics @ Klaus Peters Ruhr-Universität Bochum Santiago de Campostela, Oct 27, 2003.

Slides:



Advertisements
Similar presentations
Hadron Physics with Antiprotons – the PANDA Program Olaf N. Hartmann GSI Darmstadt, Germany INPC 2004 · Göteborg, Sweden.
Advertisements

Carsten Schwarz KP2 Physics with anti protons at the future GSI facility Physics program Detector set-up p e - coolerdetector High Energy Storage.
Hierarchies of Matter matter crystal atom atomic nucleus nucleon quarks m m m m < m (macroscopic) confinement hadron.
Guenther Rosner FAIR - UK DL, 11/10/06 1 Collaboration Universität Basel, IHEP Beijing, [University of Birmingham] Ruhr- Universität Bochum,
Klaus Peters - GSI Future - Physics with Antiprotons
Introduction Glasgow’s NPE research Group uses high precision electromagnetic probes to study the subatomic structure of matter. Alongside this we are.
Hierarchies of Matter matter crystal atom atomic nucleus nucleon quarks m m m m < m (macroscopic) confinement hadron.
Excited State Spectroscopy from Lattice QCD
Phi-Psi, Feb.-Mar., 2006, S.Uehara1 Experimental studies of charmonia in two-photon collisions at Belle S.Uehara (KEK) for the Belle Collaboration e +
Russian Contribution to PANDA Project (Part I) Dmitry Morozov, IHEP (Protvino) 1st FRRC International Seminar Moscow, ITEP June
Kernfysica: quarks, nucleonen en kernen
HL-2 April 2004Kernfysica: quarks, nucleonen en kernen1 Outline lecture (HL-2) Quarkonium Charmonium spectrum quark-antiquark potential chromomagnetic.
Hybrids and Glueballs in the light of antiproton reactions pBar Workshop GSI, Klaus Peters Ruhr-Universität Bochum.
PANDA Ulrich Wiedner, FAIR PAC meeting, March 14, 2005.
Physics with the PANDA Detector at GSI
STORI’02Carsten Schwarz Physics with p at the Future GSI Facility Physics program Detector set-up p e - coolerdetector High Energy Storage Ring HESR High.
Concept of the PANDA Detector for pp&pA at GSI Physical motivation for hadron physics with pbars The antiproton facility Detector concept Selected simulation.
Klaus Peters Ruhr-Universität Bochum GLUONIC 2003 Jefferson Lab Newport News, May 15, 2003 Exotic
Journée Thématique IPN Orsay, 2004 PANDA, a new detector for hadronic physics at GSI (FAIR) Carsten Schwarz, GSI ● The FAIR facility  HESR Storage ring.
Open and Hidden Charm Spectroscopy with Klaus Peters Ruhr-University Bochum Beijing, August 16-22, 2004 D DD*DD* ψ(1 1 D 2 ) ψ(1 3 D 2 ) ψ(1 3 D 3 ) ψ(1.
New Opportunities for Hadron Physics with the Planned PANDA Detector
Charmonium Spectroscopy at  PANDA Diego Bettoni INFN, Ferrara, Italy for the  PANDA Collaboration Mainz, Germany, 19 November 2009.
Polish-German Meeting, Warszawa, Search for exotic hadrons with the PANDA detector Jan Kisiel Institute of Physics, University of Silesia Katowice,
James Ritman Univ. Giessen PANDA: Experiments to Study the Properties of Charm in Dense Hadronic Matter Overview of the PANDA Pbar-A Program The Pbar Facility.
The PANDA experiment at FAIR Diego Bettoni Istituto Nazionale di Fisica Nucleare, Ferrara representing the PANDA collaboration Charm 2007 Cornell University,
Oct. 5 th th International Workshop on Heavy Quarkonium 2011 Jim Ritman Mitglied der Helmholtz-Gemeinschaft Status of PANDA.
1May 27, 2002Klaus Peters - GSI Future - Physics with Antiprotons.
Antiproton Physics at GSI The GSI Future project The antiproton facility The physics program - Charmonium spectroscopy - Charmed hybrids and glueballs.
Workshop on Experiments with Antiprotons at the HESR – April 2002, GSI Charmed Hadrons in Matter Introduction Medium Effects in the light quark sector.
H. Koch, SMI/ÖAW Symposium Vienna, September 1, 2006 Physics Goals of PANDA  Introduction – The PANDA Project – PANDA and HESR – Status of the PANDA Project.
Working Group 5 Summary David Christian Fermilab.
Meson spectroscopy with photo- and electro-production Curtis A. Meyer Carnegie Mellon University.
Antiproton Physics at GSI Introduction The antiproton facility The physics program - Charmonium spectroscopy - Hybrids and glueballs - Interaction of charm.
Klaus Peters Ruhr-Universität Bochum Yokohama, March 3, 2003 Charmed
H. Koch, SFAIR, Lund, Sept , 2005 Hadron Physics with Antiprotons  Overview  Physics with PANDA (see J. Ritman, U. Wiedner) – Hadron.
QCD Exotics and Charmonium Klaus Peters Ruhr-University Bochum 2nd Workshop "Challenges and Opportunities at the New International Accelerator Facility.
Antiproton Physics Experiments Keith Gollwitzer -- Fermilab Antiproton Sources Accumulator Antiproton Physics Experiments –Precision measurements Method.
C. Schwarz Experiments with a cooled p beam on an internal target Physics program Detector set-up p e - coolerdetector High Energy Storage Ring HESR P.
Paola Gianotti - LNF  Goals and achievements in meson spectroscopy: LEAR and FermiLab activities  Overview of the GSI Future Project  The Antiproton.
Workshop JINR/BMBF18.Jan.05, H.O. PANDA at FAIR Facility for Antiproton and Ion Research Herbert Orth GSI Darmstadt.
New Perspectives for Physics with Antiprotons: the HESR-Project at GSI Volker Metag II. Physikalisches Institut Justus-Liebig-Universität Gießen, Germany.
Sub-Nucleon Physics Programme Current Status & Outlook for Hadron Physics D G Ireland.
H. Koch, L.M.U. and T.U. Munich, Dec. 15, 2005 News with Charm  Introduction  Open Charm States  States with hidden Charm  Future: PANDA-Detector at.
g/ JLab Users Group Meeting Curtis A. Meyer Poster.
Physics with open charm mesons at
James Ritman Univ. Giessen PANDA: An Experiment To Investigate Hadron Structure Using Antiproton Beams Overview of the GSI Upgrade Overview of the PANDA.
Günther Rosner EINN05, Milos, 24/9/05 1 Prospects for Hadron Physics in Europe Experimental frontiers:  High precision  High luminosity  Polarisation.
C. Schwarz Experiments with a cooled p beam on an internal target Physics program Detector set-up Carsten Schwarz p e - coolerdetector High Energy Storage.
H. Koch; Seminar Graduate College Bochum/Dortmund; Hadron Spectroscopy with Antiprotons  Historical Overview  Spetroscopy with antiproton beams.
The DIRC projects of the PANDA experiment at FAIR
Goals of future p-pbar experiment Elmaddin Guliyev Student Seminar, KVI, Groningen University 6 November 2008.
Exploring QCD with Antiprotons PANDA at FAIR M. Hoek on behalf of the PANDA Collaboration IOP Nuclear and Particle Physics Divisional Conference 4-7 April.
– A Novel Detector For Frontier Physics Andrey Sokolov Institute of Nuclear Physics, Jülich Research Center, Germany XVIII International Baldin.
Günther Rosner FAIR UK DL, 25/01/06 1 antiProton Annihilation at DArmstadt Physics programme  Quark confinement: Charmonium spectroscopy 
Light Hadron Spectroscopy at BESIII Haolai TIAN (On behalf of the BESIII Collaboration) Institute of High Energy Physics, Beijing 23rd Rencontre de Blois.
E. Robutti Enrico Robutti I.N.F.N. Genova HEP 2003 Europhysics Conference July 17-23, Aachen, Germany Recent BABAR results in Charmonium and Charm Spectroscopy.
Introduction: Why is QCD so much fun? The Physics: Glue and Charm:
Exotic and non-Exotic Charmonium Spectroscopy with FAIR Klaus Peters on behalf of the PANDA Collaboration GSI and U Frankfurt TU Munich, Oct 11,
Project D: Hidden Charm Exotics at BES III Klaus J. Peters, Institut für Kernphysik, Goethe Universität Frankfurt The QuestBESIII Findings Research GroupWorkpackages.
Past Fermilab Accumulator Experiments Antiproton Source Accumulator Ring (Inner Ring) Debuncher Ring (Outer Ring) AP50 Experiment Area PRECISION Precision.
May 14, 2003 Curtis A. Meyer 1 Carnegie Mellon University May 14, 2003 An Experimental Overview of Gluonic Mesons.
PANDA AntiProton Annihilations at Darmstadt PANDA Experiment Physics and Data Analysis –Charmonium, glueballs, hybrids –Electromagnetic processes Fritz-Herbert.
D. Bettoni - The Panda experiment 1 Charmonium Spectroscopy The charmonium system has often been called the positronium of QCD. Non relativistic potential.
pp Annihilation _ Gluon- Rich Environment Direct resonant formation of states with all non-exotic quantum numbers. ⟹ excellent precision in mass.
Nuclear Physics -- Today and Tomorrow From the infinitely strong –
Recent results on light hadron spectroscopy at BES
Plans for nucleon structure studies at PANDA
Samples of Hall B Results with Strong Italian Impact
Klaus Peters Ruhr-Universität Bochum GLUONIC 2003 Jefferson Lab Newport News, May 15, 2003 Exotic
Physics Opportunities with heavy quark system at FAIR
Presentation transcript:

Hadron Physics @ Klaus Peters Ruhr-Universität Bochum Santiago de Campostela, Oct 27, 2003

The Panda Physics Program Overview The Panda Physics Program Charmonium spectroscopy Charmed hybrids and glueballs Interaction of charmed particles with nuclei (Double) Hypernuclei Many further options Detector Concepts for Panda Conclusions K. Peters - Hadron Physics @ Panda

QCD running coupling constant transition from perturbative to non-perturbative regime Q2 [GeV2] 10 1 0.1 0.05 perturbative QCD constituent quark confinement mesons and baryons 0.3 Rn r [fm] perturbative strong QCD Transition from the quark-gluon to the hadronic degrees of freedom K. Peters - Hadron Physics @ Panda

Objects of Interest SU(3)C Symmetry tells us that q3i+nq3j+ngk is color neutral i=1 j,n,k=0 baryon (B=i-j) i,j,k=0 n=1 meson i,j,n=0 k>1 glueball i,j=0 n=1 k>0 meson hybrid i=1 j,n=0 k>0 baryon hybrid i,n=1 j,k=0 penta quark i,j,k=0 n=2 four quark i,j,k=0 n=3 / i,j=3 k,n=0 baryonium (hexa quark) K. Peters - Hadron Physics @ Panda

Objects of Interest Mesons/Baryons Molecules/Multiquarks Hybrids AntiQuark Mesons/Baryons Molecules/Multiquarks Hybrids Glueballs + Effects due to the complicated QCD vacuum K. Peters - Hadron Physics @ Panda

Light Meson Spectrum Lattice 1-+ 1.9 GeV 0++ 1.6 GeV exotic nonets qq Mesons Each box corresponds to 4 nonets (2 for L=0) Radial excitations 2–+ 2.5 0–+ Hybrids 2++ 2+– 2–+ 1–– 2.0 1–+ exotic nonets Glueballs 1+– 1++ 1.5 Lattice 1-+ 1.9 GeV 0+– 0–+ 0++ 1.0 0++ 1.6 GeV L = 0 1 2 3 4 (L = qq angular momentum) K. Peters - Hadron Physics @ Panda

Level Mixing Mixing (Light Quark) Better: Experimental approach: broad states high level density Better: narrow states and/or lower level density charmed systems ! Experimental approach: Charm physics: Transition chiral to heavy quark limits Proton-Antiproton: rich hadronic source K. Peters - Hadron Physics @ Panda

Charmonium Physics Open questions … … Exclusive Channels hc – inconsistencies hc’ - y(2S) splitting h1c (1P1) unconfirmed Peculiar decays of y(4040) Terra incognita for any 2P and D-States … Exclusive Channels Helicity violation G-Parity violation Higher Fock state contributions K. Peters - Hadron Physics @ Panda

Charmonium Physics e+e- interactions: cc1 pp reactions: Only 1-- states are formed Other states only by secondary decays (moderate mass resolution) pp reactions: All states directly formed (very good mass resolution) 3500 3520 MeV 3510 CBall ev./2 MeV 100 ECM CBall E835 cc1 1000 E 835 ev./pb K. Peters - Hadron Physics @ Panda

Resonance Cross Section Resonance Scan ECM Resonance Cross Section Measured Rate Beam Profile small and well controlled beam momentum spread Dp/p is extremely important K. Peters - Hadron Physics @ Panda

Charmonium Physics with pp Expect 1-2 fb-1 (like CLEO-C) pp (>5.5 GeV/c) ® J/y 107/d pp (>5.5 GeV/c) ® cc2 (® J/y g) 105/d pp (>5.5 GeV/c) ® hc‘(® ff) 104/d|rec.? Comparison of PANDA@HESR to E835 Maximum energy 15 GeV/c instead of 9 GeV/c Luminosity 10x higher Detector with magnetic field – charged final states Dp/p 10x better Dedicated machine with stable conditions K. Peters - Hadron Physics @ Panda

Charmed Hybrids Gluonic excitations of the quark-antiquark-potential may lead to bound states LQCD: P-potential of excited gluon flux in addition to S-potential for one-gluon exchange mHc ~ 4.2-4.5 GeV/c2 Light charmed hybrids could be narrow if open charm decays are inaccessible or suppressed P S important <r2> and rBreakup K. Peters - Hadron Physics @ Panda

S-Wave+Gluon (qq)8g with ()8=coloured 1S0 ­¯ 3S1 ­­ Simplest Hybrids S-Wave+Gluon (qq)8g with ()8=coloured 1S0 ­¯ 3S1 ­­ combined with a 1+ or 1- gluon Gluon 1– (TM) 1+(TE) 1S0, 0–+ 1++ 1–– 3S1, 1–– 0+- 0–+ 1+- 1–+ 2+- 2–+ Meson – Hybrid Mixing q g MIX g FSI Exotic JPC cannot! be formed by qq K. Peters - Hadron Physics @ Panda

Charmed Hybrid Level Scheme 1-- (0,1,2)-+ < 1++ (0,1,2)+- JKM00, NPB83Suppl83(2000)304 and Manke, PRD57(1998)3829 L-Splitting Dm ~ 100-250 MeV/c2 for 1-+ to 0+- S-Splittings Page thesis,1995 and PRD35(1987)1668 4.14 (0-+ ) to 4.52 GeV/c2 (2-+) consistent w/LQCD JKM, NPB86suppl(2000)397, PLB478(2000) 151 0+- 4.47 1+- 4.70 2+- 4.85 1++ 4.81 4.8 4.7 4.6 0-+ 4.14 1-+ 4.37 2-+ 4.52 1-- 4.48 4.5 4.4 4.3 DD** 4.2 4.1 K. Peters - Hadron Physics @ Panda

Charmed Hybrid Level Scheme 1-- (0,1,2)-+ < 1++ (0,1,2)+- JKM00, NPB83Suppl83(2000)304 and Manke, PRD57(1998)3829 L-Splitting Dm ~ 100-250 MeV/c2 for 1-+ to 0+- S-Splittings Page thesis,1995 and PRD35(1987)1668 4.14 (0-+ ) to 4.52 GeV/c2 (2-+) consistent w/LQCD JKM, NPB86suppl(2000)397, PLB478(2000) 151 0+- 1+- 2+- 1++ 4.8 4.7 4.6 0-+ 1-+ 2-+ 1-- 4.5 4.4 4.3 DD** 4.2 4.1 K. Peters - Hadron Physics @ Panda

Proton-Antiproton @ Rest/Flight Production all JPC available Formation only selected JPC Gluon rich process creates gluonic excitation in a direct way cc requires the quarks to annihilate (no rearrangement) yield comparable to charmonium production formation yield 8:1 due to colour octet in hybrids K. Peters - Hadron Physics @ Panda

Proton-Antiproton @ Rest/Flight Production p _ G M p M H _ p M H _ all JPC available Formation p _ G p _ H p _ H only selected JPC Gluon rich process creates gluonic excitation in a direct way cc requires the quarks to annihilate (no rearrangement) yield comparable to charmonium production formation yield 8:1 due to colour octet in hybrids Momentum range for a survey pp ® ~15 GeV K. Peters - Hadron Physics @ Panda

Exotics in Proton-Antiproton Exotics are heavily produced in pp reactions High production yields for exotic mesons (or with a large fraction of it) f0(1500)p ® ~25 % in 3p0 f0(1500)p ® ~25 % in 2hp0 p1(1400)p ® >10 % in p±p0h Crystal Barrel Interference with other well known (conventional) states is mandatory for the phase analysis K. Peters - Hadron Physics @ Panda

Open charm discoveries The DS± Spectrum |cs> +c.c. was not expected to reveal any surprises, but chiral and heavy quark aspects meet Potential model Old measurements New observations m [GeV/c2] Ds1 Ds2 D*K DsJ (2458) D0K # 1267  53 Events in peak DsJ* (2317) Ds* Combinatorial DS*+ g DS*+(2112) DsJ*(2317) Ds BABAR 0- 1- 0+ 1+ 2+ 3- JP K. Peters - Hadron Physics @ Panda

Heavy Glueballs Light gg/ggg-systems are complicated to identify (mixing!) Exotic heavy glueballs m(0+-) = 4140(50)(200) MeV m(2+-) = 4740(70)(230) MeV Width unknown, but! nature invests more likely in mass than in momentum newest proof: double cc yield in e+e- Flavour-blindness predicts decays into charmed final states too Same run period as hybrids In addition: scan m>2 GeV/c2 Morningstar und Peardon, PRD60 (1999) 034509 Morningstar und Peardon, PRD56 (1997) 4043 K. Peters - Hadron Physics @ Panda

Accessible cc-Hadrons at PANDA @ HESR @ GSI mass and phase space of recoil meson for exotic JPC included conventional charmonium Other exotics with identical decay channels ® same region K. Peters - Hadron Physics @ Panda

Charmed Hadrons in Nuclear Matter Partial restoration of chiral symmetry in nuclear matter Light quarks are sensitive to quark condensate Evidence for mass changes of pions and kaons has been deduced previously: deeply bound pionic atoms (anti-)kaon yield and phase space distribution D-Mesons are the QCD analogue of the H-atom. chiral symmetry to be studied on a single light quark vacuum nuclear medium p K 25 MeV 100 MeV K+ K- p- p+ Hayaski, PLB 487 (2000) 96 Morath, Lee, Weise, priv. Comm. D- 50 MeV D D+ K. Peters - Hadron Physics @ Panda

Open Charm in the Nuclei The expected signal: strong enhancement of the D-meson cross section, relative D+ D- yields, in the near/sub-threshold region. Complementary to heavy ion collisions T~0 in-medium free masses bare D+D- 10-2 10-1 1 10 102 103 s(nb) 4 5 6 7 D- spA spA (A) = ? AspN AspN D+ T (GeV) K. Peters - Hadron Physics @ Panda

Charmonium in the Nuclei GeV/c2 Mass Lowering of the D+D- mass allow charmonium states to decay into this channel, thus resulting in a dramatic increase of width y(1D) Γ=20®40 MeV y(2S) Γ=0,32®2,7 MeV Experiment: Dilepton-Channels and/or highly constrained hadronic channels Idea Study relative changes of yield and width of the charmonium states. y(33S1) 4 3.8 y(13D1) 3,74 3,64 3,54 vacuum 1r0 2r0 y(23S1) 3.6 cc2(13P2) cc1(13P1) 3.4 cc1(13P0) 3.2 y(13S1) hc(11S0) 3 K. Peters - Hadron Physics @ Panda

J/y Absorption in Nuclei Important for the understanding of heavy ion collisions Related to QGP p K. Peters - Hadron Physics @ Panda

J/ψ Absorption in Nuclei Important for the understanding of heavy ion collisions Related to QGP Reaction p + A  J/ψ + (A-1) Fermi-smeared cc-Production J/ψ, ψ’ or interference region selected by p-Momentum Longitudinal und transverse Fermi-distribution is measurable J/y s(e+e-) pb p(pbar) GeV/c 200 100 3.5 4.5 4.0 5.0 FF J/y K. Peters - Hadron Physics @ Panda

Further Experiments and Optional extensions Hypernuclear physics 3rd dimension of nuclear chart Focus: Double Hypernuclei Inverted DVCS - WACS Measure dynamics of quarks and gluons in a hadron Handbag diagram – electromagnetic final states Proton Formfactors at large Q2 s up to 25 GeV2/c4 D(S)-Physics Spectroscopy: Threshold production BR and decay dalitz plots with high statistics CP-Violation in the D-Sector K. Peters - Hadron Physics @ Panda

The Antiproton Facility K. Peters - Hadron Physics @ Panda

The Antiproton Facility Antiproton production similar to CERN, HESR = High Energy Storage Ring Production rate 107/sec Pbeam = 1.5 - 15 GeV/c Nstored = 5 x 1010 p Gas-Jet/Pellet/Wire Target High luminosity mode Luminosity = 2 x 1032 cm-2s-1 Dp/p ~ 10-4 (stochastic cooling) High resolution mode Dp/p ~ 10-5 (electron cooling) Luminosity = 1031 cm-2s-1 K. Peters - Hadron Physics @ Panda

Proposed Detector (Overview) High Rates Total σ ~ 55 mb Vertexing (σp,KS,Λ,…) Charged particle ID (e±,μ±,π±,p,…) Magnetic tracking Elm. Calorimetry (γ,π0,η) Forward capabilities (leading particles) Sophisticated Trigger(s) K. Peters - Hadron Physics @ Panda

Participating Institutes (with Representative in the Coordination Board) 42 Institutes (35 Locations) from 9 Countries: Austria - Germany – Italy – Netherlands – Poland – Russia – Sweden – U.K. – U.S. U Oriente, Alessandria U Bochum U Bonn U & INFN Brescia U Catania U Cracow GSI Darmstadt TU Dresden JINR Dubna I + II U Edinburgh U Erlangen NWU Evanston U & INFN Ferrara U Frankfurt LNF-INFN Frascati U & INFN Genova U Glasgow U Gießen KVI Groningen IKP Jülich I + II U Katowice U Mainz TU München U Münster BINP Novosibirsk U Pavia U of Silesia U Stockholm U Torino Politechnico di Torino U & INFN Trieste U Tübingen U & TSL Uppsala IMEP Vienna SINS Warsaw K. Peters - Hadron Physics @ Panda

Competition BES, BNL, CLEO-C, DaΦne, Hall-D, JHF Topic Competitor Confinement Charmonium all cc states with high resolution CLEO-C only 1–– states Gluonic Excitations charmed hybrids heavy glueballs CLEO-C light glueballs Hall-D light hybrids Nuclear Interactions D-mass shift J/ψ absorption (T~0) DaΦne K-mass shift Hypernuclei γ-spectroscopy of Λ- and ΛΛ–hypernuclei BNL indirect evidence only JHF single HN Open Charm Physics Rare D-Decays CP-physics in Hadrons CLEO-C rare D-Decays CP-physics in D-Mesons ν,K-beams JHF rare K-Decays (?) neutrino physics K. Peters - Hadron Physics @ Panda

high resolution spectroscopy with p-beams in formation experiments: Why Antiprotons ? high resolution spectroscopy with p-beams in formation experiments: ΔE  ΔEbeam high yields of gluonic excitations in pp glueballs, charmed hybrids event tagging by pair wise associated production, (particle, anti-particle) e.g. ppDD large √s at low momentum transfer important for in-medium "implantation" of hadrons: study of in-medium effects of charmed states K. Peters - Hadron Physics @ Panda

The antiproton facility HESR @ GSI addresses many important questions Summary & Outlook Investigation of charmed hadrons and their interaction with matter is a mandatory task for the next decade The antiproton facility HESR @ GSI addresses many important questions A high performance storage ring and detector are envisaged to utilize a luminosity of L=2∙1032 cm-2s-1 K. Peters - Hadron Physics @ Panda