Electron Optics Basic Introduction Bob Ashley 6-14-2013.

Slides:



Advertisements
Similar presentations
24.6 Diffraction Huygen’s principle requires that the waves spread out after they pass through slits This spreading out of light from its initial line.
Advertisements

Basic Electron Microscopy
Thin Films, Diffraction, and Double slit interference
Electron Optics.
Interference and Diffraction
The Wave Nature of Light
Groups: WA 2,4,5,7. History  The electron microscope was first invented by a team of German engineers headed by Max Knoll and physicist Ernst Ruska in.
Blizard Advanced Light Microscopy club Making friends with your microscope.
Diffraction of Light Waves
Foundations of Physics
Optics 1. 2 The electromagnetic spectrum Visible light make up only a small part of the entire spectrum of electromagnetic waves. Unlike sound waves and.
Chapter 24 Wave Optics.
Chapter 24 Wave Optics.
OPTICS. I. IMAGES A. Definition- An image is formed where light rays originating from the same point on an object intersect on a surface or appear to.
Chapter 34 The Wave Nature of Light; Interference
Interference Applications Physics 202 Professor Lee Carkner Lecture 25.
Slide 1 Light and telescopes Just by analyzing the light received from a star, astronomers can retrieve information about a star’s 1.Total energy output.
Chapter 25: Interference and Diffraction
Physics for Scientists and Engineers II, Summer Semester Lecture 26: July 29 th 2009 Physics for Scientists and Engineers II.
Chapter 32 Light: Reflection and Refraction
Diffraction vs. Interference
3: Interference, Diffraction and Polarization
Chapter 37 Wave Optics. Wave optics is a study concerned with phenomena that cannot be adequately explained by geometric (ray) optics.  Sometimes called.
Chapter 17 Optics 17.1 Reflection and Refraction
Microscope.
Please put your box number on your homework from now on. Box numbers are written in orange on the homework I am handing back. They are also posted in the.
Microscopy.
Chapter 25 Optical Instruments.
Wave Optics.
Diffraction: single slit How can we explain the pattern from light going through a single slit? w screen L x.
Lenses Chapter 30.
Refraction. Optical Density  Inverse measure of speed of light through transparent medium  Light travels slower in more dense media  Partial reflection.
Fundamental of Optical Engineering Lecture 3.  Aberration happens when the rays do not converge to a point where it should be. We may distinguish the.
B. Spatial coherancy & source size Spetial coherancy is related to the size of the source. Source size governs spatial coherancy and maller source sizes.
Microscopy. Scale Lenses and the Bending of Light light is refracted (bent) when passing from one medium to another refractive index –a measure of how.
Optics 2: REFRACTION & LENSES. REFRACTION Refraction: is the bending of waves because of the change of speed of a wave when it passes from one medium.
Scanning Electron Microscope (SEM)
Chapter 24 Wave Optics. General Physics Review – waves T=1/f period, frequency T=1/f period, frequency v = f velocity, wavelength v = f velocity, wavelength.
Chapter 13 The Characteristics of light. Objectives Identify the components of the electromagnetic spectrum. Calculate the frequency or wavelength of.
Geometrical Optics Chapter 24 + Other Tidbits 1. On and on and on …  This is a short week.  Schedule follows  So far, no room available for problem.
The lens, diffraction and photon game
Lenses Chapter 30. Converging and Diverging Lenses  Lens – a piece of glass which bends parallel rays so that they cross and form an image  Converging.
Transverse or longitudinal waves transport energy from one point to another. Each particle in the medium vibrates or oscillates, and disturbs the neighbouring.
Optical Density - a property of a transparent medium that is an inverse measure of the speed of light through the medium. (how much a medium slows the.
Transmission Electron Microscope Basic premise of a TEM is to project a magnified image of the specimen onto a fluorescent screen where it can be viewed.
© 2010 Pearson Education, Inc. Lecture Outline Chapter 24 College Physics, 7 th Edition Wilson / Buffa / Lou.
Physics 203/204 6: Diffraction and Polarization Single Slit Diffraction Diffraction Grating Diffraction by Crystals Polarization of Light Waves.
Lecture Nine: Interference of Light Waves: I
The Wave Nature of Light
Lecture 26-1 Lens Equation ( < 0 )  True for thin lens and paraxial rays.  magnification m = h’/h = - q/p.
Wave nature of light Light is an electromagnetic wave. EM waves are those waves in which there are sinusoidal variation of electric and magnetic fields.
Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Interference and Diffraction Chapter 15 Table of Contents Section.
6.2 Two slit interference Coherence Two-Slit Interference Thin film Interference.
L 32 Light and Optics-4 Up to now we have been studying geometric optics Today we will look at effects related to the wave nature of light – physical optics.
The law of reflection: The law of refraction: Image formation
Transmission Electron Microscope
Light refraction Chapter 29 in textbook.
L 33 Light and Optics [4] Measurements of the speed of light  The bending of light – refraction  Total internal reflection  Dispersion Dispersion 
Copyright © 2009 Pearson Education, Inc. Chapter 35-Diffraction.
(Image: T. Wittman, Scripps) Introduction to Light Microscopy.
Microscopy.
Microscopy Group 2 Cabatit, Mendoza, Ramos, Rodriguez, Tan.
Microscope.
Light Through a Single Slit
Mirrors and Lenses Images can be formed by reflection from mirrors.
Chapter Menu Lesson 1: What is light? Lesson 2: Light and Matter
Diffraction vs. Interference
Resolution of Microscope
Presentation transcript:

Electron Optics Basic Introduction Bob Ashley

Overview Why electrons? Wavelength and visible light Effects of diffraction and resolution Lens design Defects and distortions Magnification

Electron Duality Electrons have a particle and wave nature Wave and particle nature Source

Why Electrons? Wavelength ( λ ) Measurement of sinusoidal wave distance peak to peak Visible light small segment Electrons wavelength dependent on velocity 200kV scope 1.2 x nm

The Wave Radiate from source in widening circles Diffraction phenomenon Wave strike edge and bend Interference of waves

Phase Difference between two waves having the same electrical degrees or time and having the same frequency are in phase. Can interfere with other waves. Constructive interference Additive property of two waves Destructive interference Cancelling waves Scattering Wave deviation from trajectory with resultant wave phase difference Coherent Constant phase difference Not necessary to be in phase Incoherent Multiple phases combine and cancel Illustration of phase shift. The horizontal axis represents an angle (phase) that is increasing with time. Wikipedia Waves combine (constructive, coherent) Waves combine 180° out of phase (destructive, coherent) = = = Waves that combine with varying phases nearly cancel out (incoherent addition) Scattering

Diffraction Waves interfere with the initial wave front Appear to have a series of bright parallel bands or fringes Fresnel Fringes freh-nell Resolution is degraded Edges fuzzy rather than distinct

Airy Discs The airy discs are the ringed patterns of Fresnel fringes When they overlap more difficult to discern two points as independent and thus resolution is poorer Airy disc radius is the measurement of resolution Point Spread Function Figure: Bizzola Electron Microscopy 1999http://greenfluorescentblog.files.wordpress.com/

Some Math The math behind resolution (radius of airy disc) λ = wavelength, n= refractive index (what medium the wave is passing through glass etc.), α = aperture angle of lens λ r = ______________ n (sin α )

Resolving Power Light microscope r = 172 nm Electron Microscope r =.003 nm theoretical r =.27 nm point to point in JEOL 2100 scope Why?

The Holy Trinity Resolution, Magnification, and Contrast Tradeoffs None can be fully actualized

The Holy Trinity Resolution The ability to distinguish two closely placed entities that otherwise might appear as one Adobe.com Resolution, Magnification, and Contrast

The Holy Trinity Magnification The measure of the increase in diameter of a structure from it’s original size Resolution, Magnification, and Contrast

Holy Trinity Contrast The ability to distinguish differences in intensity values between bright and dark areas. Resolution, Magnification, and Contrast

Contrast Two types in electron microscopy Amplitude contrast (scattering contrast) Subtractive effect where various shades are evident by loss of electrons Main source of most electron microscope contrast (except cryo) Phase Contrast (interference contrast) Interference of diffracted waves cause intensity differences due to loss of energy and the corresponding shorter focal points Appear as bright ring or halo around the edge of an object Fresnel ‘freh-nell ’ fringe

Lenses and Magnification Double convex converging lens Same optical properties of light microscopes and electron microscopes Refraction Image formation in a lens Same optical properties of light microscopes and electron microscopes Bizzola Electron Microscopy 1999

Electromagnetic Lenses Electrons move in helical pattern Very influenced by magnetic fields Mass is small and require “mean free path”- high vacuum Bizzola Electron Microscopy 1999

Resolution Limiting Phenomena Electromagnetic lens defects Spherical aberration Chromatic aberration Astigmatism Beam coherence Source of electron beam Wikipedia

Spherical Aberration Due to geometry of electromagnetic lenses such that rays passing through the periphery of the lens are refracted more that rays passing along the axis Circle of minimum confusion Corrected in EM with apertures to eliminate some of the peripheral rays but results in decrease aperture angle and therefore resolution This is C s programs for image processing 2.0 mm in 2100, constant Bizzola Electron Microscopy 1999

Chromatic Aberration Distortion in lens in which there is a failure to focus different wavelength rays to converge on same point. In light it’s the different color wavelengths In electrons shorter wavelength electrons are more energetic and have a longer focal length than longer wavelength electrons. Results in enlargement of focal point similar to Airy disc Minimized by ensuring stable voltage of source Good vacuum Thinner specimens Electrons transmitted through specimen will change their energy and wavelength

Astigmatism Radial blur results when a lens field is not symmetrical in strength but stronger in one plane and weaker in another Only part of image will be in focus at a given time Point would appear elliptical rather than spherical Corrected by Properly centered apertures Stigmators of condenser and objective lens Nature Protocols 3, (2008)

Magnification in the Transmission Electron Microscope Three magnify lenses in the electron microscope Objective Intermediate Projector image distance Mag = ___________________ object distance Magnification is product of the individual magnifying powers of each lens M T = M O x M I x M P Light microscope 1,000x EM 1,000,000x Useful magnification = resolution of eye (CCD) / resolution of lens system

The TEM…To Be Continued Bizzola Electron Microscopy 1999

SusanHafenstein Pixel size

Calculating your Pixel size Knowing the size of each pixel in the digital image Used to produce a magnification bar and Measure objects For 3D cryoEM is is needed when determining the CTF and calculating the reconstruction

Information is imbedded in the ccd (in DM3 format – accessible by Digital Micrograph program) OR available in posted table on “Microscope magnifications and pixel sizes” OR You can calculate from the known magnification used to record the image

Film There are 25,400 microns/inch. 25,400 microns/inch divided by dpi = scan step size The Nikon Super Coolscan 8000ED scans at 4000dpi 25,400 microns/inch divided by 8000 = 6.35 micron 6.35 microns = 63,500 angstrom Divide 63,500 by the Magnification of microscope to get the pixel size 63, = 1.08 Angstrom / pixel 59,000

Calculation of Pixel Size From a CCD Image You have to know the actual pixel size of the CCD cameras and the magnification of your image. As an example: 15 microns = 150,000 Å.. camera pixel size (in Å) = the pixel size at the specimen magnification level

How big a box? Diameter Of object 20 % Box size (don’t forget to ‘feather’) Note: Or + 50%, or X2, or X3

Example: Picornavirus = 300Å + 60 Å box = 360Å if your pixel size is 2.14Å/pixel you should select 168 pixel diameter for your box size

Workshop: Same data --- different programs Same program --- different data Beginners + intermediate + experienced