10/28/2009VLSI Design & Test Seminar1 Diagnostic Tests and Full- Response Fault Dictionary Vishwani D. Agrawal ECE Dept., Auburn University Auburn, AL.

Slides:



Advertisements
Similar presentations
Weighted Random and Transition Density Patterns for Scan-BIST Farhana Rashid* Vishwani D. Agrawal Auburn University ECE Department, Auburn, Alabama
Advertisements

An Algorithm for Diagnostic Fault Simulation Yu Zhang Vishwani D. Agrawal Auburn University, Auburn, Alabama USA 13/29/2010IEEE LATW 10.
Committee: Vishwani D. Agrawal Adit Singh Victor P. Nelson
1 Dictionary-Less Defect Diagnosis as Surrogate Single Stuck-At Faults Chidambaram Alagappan Vishwani D. Agrawal Department of Electrical and Computer.
Leakage and Dynamic Glitch Power Minimization Using MIP for V th Assignment and Path Balancing Yuanlin Lu and Vishwani D. Agrawal Auburn University ECE.
Mar. 27, 2013 Chidambaram's MS Defense1 Dictionary-Less Defect Diagnosis as Real or Surrogate Single Stuck- At Faults Master’s Defense Chidambaram Alagappan.
Nov. 21, 2006ATS'06 1 Spectral RTL Test Generation for Gate-Level Stuck-at Faults Nitin Yogi and Vishwani D. Agrawal Auburn University, Department of ECE,
Compaction of Diagnostic Test Set for a Full-Response Dictionary Mohammed Ashfaq Shukoor Vishwani D. Agrawal 18th IEEE North Atlantic Test Workshop, 2009.
3/30/05Agrawal: Implication Graphs1 Implication Graphs and Logic Testing Vishwani D. Agrawal James J. Danaher Professor Dept. of ECE, Auburn University.
Minimum Dynamic Power CMOS Circuit Design by a Reduced Constraint Set Linear Program Tezaswi Raja Vishwani Agrawal Michael L. Bushnell Rutgers University,
Jan. 29, 2002Gaur, et al.: DELTA'021 A New Transitive Closure Algorithm with Application to Redundancy Identification Vivek Gaur Avant! Corp., Fremont,
Diagnostic Test Generation and Fault Simulation Algorithms for Transition Faults Yu Zhang Vishwani D. Agrawal Auburn University, Auburn, Alabama
Dual Voltage Design for Minimum Energy Using Gate Slack Kyungseok Kim and Vishwani D. Agrawal ECE Dept. Auburn University Auburn, AL 36849, USA IEEE ICIT-SSST.
Yu Zhang Vishwani D. Agrawal Auburn University, Auburn, Alabama /13/2010 NATW 10 1 A Diagnostic Test Generation System.
A Diagnostic Test Generation System Yu Zhang Vishwani D. Agrawal Auburn University, Auburn, Alabama USA Nov. 3rdITC
Reduced Complexity Test Generation Algorithms for Transition Fault Diagnosis Yu Zhang Vishwani D. Agrawal Auburn University, Auburn, Alabama USA.
May 11, 2006High-Level Spectral ATPG1 High-Level Test Generation for Gate-level Fault Coverage Nitin Yogi and Vishwani D. Agrawal Auburn University Department.
May 17, 2007North Atlantic Test Workshop (NATW) 2007, May 16-18, Boxborough, Massachusetts 1 Nitin Yogi and Vishwani D. Agrawal Auburn University Department.
Aug 23, ‘021Low-Power Design Minimum Dynamic Power Design of CMOS Circuits by Linear Program Using Reduced Constraint Set Vishwani D. Agrawal Agere Systems,
Design of Variable Input Delay Gates for Low Dynamic Power Circuits
Nov 29th 2006MS Thesis Defense1 Minimizing N-Detect Tests for Combinational Circuits Master’s Defense Kalyana R. Kantipudi Thesis Advisor: Dr. Vishwani.
May 14, ISVLSI 09 Algorithms for Estimating Number of Glitches and Dynamic Power in CMOS Circuits with Delay Variations Jins Davis Alexander Vishwani.
Dec. 19, 2005ATS05: Agrawal and Doshi1 Concurrent Test Generation Auburn University, Department of Electrical and Computer Engineering Auburn, AL 36849,
Concurrent Test Generation Auburn University, Department of Electrical and Computer Engineering Auburn, AL 36849, USA Vishwani D. Agrawal Alok S. Doshi.
Fall 2006, Sep. 5 and 7 ELEC / Lecture 4 1 ELEC / (Fall 2006) Low-Power Design of Electronic Circuits (Formerly ELEC / )
Aug 11, 2006Yogi/Agrawal: Spectral Functional ATPG1 Spectral Characterization of Functional Vectors for Gate-level Fault Coverage Tests Nitin Yogi and.
6/17/2015Spectral Testing1 Spectral Testing of Digital Circuits An Embedded Tutorial Vishwani D. Agrawal Agere Systems Murray Hill, NJ 07974, USA
A Two Phase Approach for Minimal Diagnostic Test Set Generation Mohammed Ashfaq Shukoor Vishwani D. Agrawal 14th IEEE European Test Symposium Seville,
ELEC 7250 Term Project Presentation Khushboo Sheth Department of Electrical and Computer Engineering Auburn University, Auburn, AL.
Spring 08, Feb 14 ELEC 7770: Advanced VLSI Design (Agrawal) 1 ELEC 7770 Advanced VLSI Design Spring 2008 Linear Programming – A Mathematical Optimization.
Spring 07, Feb 8 ELEC 7770: Advanced VLSI Design (Agrawal) 1 ELEC 7770 Advanced VLSI Design Spring 2007 Logic Equivalence Vishwani D. Agrawal James J.
Hierarchical Fault Collapsing for Logic Circuits Thesis Advisor:Vishwani D. Agrawal Committee Members:Victor P. Nelson, Charles E. Stroud Dept. of ECE,
Jan. 9, 2007 VLSI Design Conference Spectral RTL Test Generation for Microprocessors Nitin Yogi and Vishwani D. Agrawal Auburn University Department.
Dec. 29, 2005Texas Instruments (India)1 Concurrent Test Generation Auburn University, Department of Electrical and Computer Engineering Auburn, AL 36849,
Copyright Agrawal, 2007 ELEC6270 Fall 07, Lecture 8 1 ELEC 5270/6270 Fall 2007 Low-Power Design of Electronic Circuits Linear Programming – A Mathematical.
May 28, 2003Minimum Dynamic Power CMOS1 Minimum Dynamic Power CMOS Circuits Vishwani D. Agrawal Rutgers University, Dept. of ECE Piscataway, NJ 08854
Using Hierarchy in Design Automation: The Fault Collapsing Problem Raja K. K. R. Sandireddy Intel Corporation Hillsboro, OR 97124, USA
Independence Fault Collapsing
Exclusive Test and its Application to Fault Diagnosis Vishwani D. Agrawal Dong Hyun Baik Yong C. Kim Kewal K. Saluja Kewal K. Saluja.
Jan 6-10th, 2007VLSI Design A Reduced Complexity Algorithm for Minimizing N-Detect Tests Kalyana R. Kantipudi Vishwani D. Agrawal Department of Electrical.
March 17, 2008Southeastern Symposium on System Theory (SSST) 2008, March 16-18, New Orleans, Louisiana 1 Nitin Yogi and Dr. Vishwani D. Agrawal Auburn.
Using Hierarchy in Design Automation: The Fault Collapsing Problem Raja K. K. R. Sandireddy Intel Corporation Hillsboro, OR 97124, USA
May 13, 2005Sandireddy & Agrawal: Hierarchy in Fault Collapsing 1 Use of Hierarchy in Fault Collapsing Raja K. K. R. Sandireddy Intel Corporation Hillsboro,
Jan. 6, 2006VLSI Design '061 On the Size and Generation of Minimal N-Detection Tests Kalyana R. Kantipudi Vishwani D. Agrawal Department of Electrical.
February 4, 2009Shukoor: MS Thesis Defense1 Fault Detection and Diagnostic Test Set Minimization Master’s Defense Mohammed Ashfaq Shukoor Dept. of ECE,
Independence Fault Collapsing and Concurrent Test Generation Thesis Advisor: Vishwani D. Agrawal Committee Members: Victor P. Nelson, Charles E. Stroud.
Oct. 5, 2001Agrawal, Kim and Saluja1 Partial Scan Design With Guaranteed Combinational ATPG Vishwani D. Agrawal Agere Systems Processor Architectures and.
11/17/04VLSI Design & Test Seminar: Spectral Testing 1 Spectral Testing Vishwani D. Agrawal James J. Danaher Professor Dept. of Electrical and Computer.
Jan. 11, '02Kim, et al., VLSI Design'021 Mutiple Faults: Modeling, Simulation and Test Yong C. Kim University of Wisconsin, Dept. of ECE, Madison, WI 53706,
March 6, th Southeastern Symposium on System Theory1 Transition Delay Fault Testing of Microprocessors by Spectral Method Nitin Yogi and Vishwani.
4/26/05Cheng: ELEC72501 A New Method for Diagnosing Multiple Stuck- at-Faults using Multiple and Single Fault Simulations An-jen Cheng ECE Dept. Auburn.
Using Contrapositive Law in an Implication Graph to Identify Logic Redundancies Kunal K. Dave ATI Research INC. Vishwani D. Agrawal Dept. of ECE, Auburn.
Diagnostic and Detection Fault Collapsing for Multiple Output Circuits Raja K. K. R. Sandireddy and Vishwani D. Agrawal Dept. Of Electrical and Computer.
Spring 07, Mar 13, 15 ELEC 7770: Advanced VLSI Design (Agrawal) 1 ELEC 7770 Advanced VLSI Design Spring 2007 Linear Programming – A Mathematical Optimization.
Power-Aware SoC Test Optimization through Dynamic Voltage and Frequency Scaling Vijay Sheshadri, Vishwani D. Agrawal, Prathima Agrawal Dept. of Electrical.
March 8, 2006Spectral RTL ATPG1 High-Level Spectral ATPG for Gate-level Circuits Nitin Yogi and Vishwani D. Agrawal Auburn University Department of ECE.
Jia Yao and Vishwani D. Agrawal Department of Electrical and Computer Engineering Auburn University Auburn, AL 36830, USA Dual-Threshold Design of Sub-Threshold.
Master’s Thesis Defense Xiaolu Shi Dept. of ECE, Auburn University
Muralidharan Venkatasubramanian Vishwani D. Agrawal
VTS 2012: Zhao-Agrawal1 Net Diagnosis using Stuck-at and Transition Fault Models Lixing Zhao* Vishwani D. Agrawal Department of Electrical and Computer.
Vishwani D. Agrawal Auburn University, Dept. of Elec. & Comp. Engg. Auburn, AL 36849, U.S.A. Nitin Yogi NVIDIA Corporation, Santa Clara, CA th.
Jing Ye 1,2, Xiaolin Zhang 1,2, Yu Hu 1, and Xiaowei Li 1 1 Key Laboratory of Computer System and Architecture Institute of Computing Technology Chinese.
November 25Asian Test Symposium 2008, Nov 24-27, Sapporo, Japan1 Sequential Circuit BIST Synthesis using Spectrum and Noise from ATPG Patterns Nitin Yogi.
COE-571 Digital System Testing A Pattern Ordering Algorithm for Reducing the Size of Fault Dictionaries Authors: P. Bernardi, M. Grosso, M. Rebaudengo,
` Printing: This poster is 48” wide by 36” high. It’s designed to be printed on a large-format printer. Customizing the Content: The placeholders in this.
Overview: Fault Diagnosis
Pattern Compression for Multiple Fault Models
Fault Collapsing via Functional Dominance
A Primal-Dual Solution to Minimal Test Generation Problem
Veeraraghavan Ramamurthy
Presentation transcript:

10/28/2009VLSI Design & Test Seminar1 Diagnostic Tests and Full- Response Fault Dictionary Vishwani D. Agrawal ECE Dept., Auburn University Auburn, AL October 28, 2009

10/28/2009VLSI Design & Test Seminar2 A Two Phase Approach for Minimal Diagnostic Test Set Generation Mohammed Ashfaq Shukoor Vishwani D. Agrawal 14th IEEE European Test Symposium Seville, Spain, May 25-28, 2009 Auburn University, Department of Electrical and Computer Engineering Auburn, AL 36849, USA

10/28/2009VLSI Design & Test Seminar3 A Primal-Dual Solution to Minimal Test Generation Problem Auburn University, Department of Electrical and Computer Engineering Auburn, AL 36849, USA Mohammed Ashfaq Shukoor Vishwani D. Agrawal 12 th IEEE VLSI Design and Test Symposium, 2008, Bangalore

10/28/2009VLSI Design & Test Seminar44 Outline  Introduction  Motivation  Fault Diagnostic Table  Diagnostic ILP  Diagnostic Fault Independence  2-phase Approach  Results  Conclusion & Future Work

10/28/2009VLSI Design & Test Seminar55 Fault Dictionary Based Diagnosis Fault dictionary is a database of simulated test responses for all modeled faults. Used by some diagnosis algorithms: –It is fast –No simulation at the time of diagnosis. Dictionary can be very large, however! Two most popular forms of dictionaries are: –Pass-Fail Dictionary –Full-Response Dictionary

10/28/2009VLSI Design & Test Seminar66 Pass-Fail Dictionary For each vector store the list of all detectable faults. Total storage requirement: F  T bits, where F is number of faults and T is number of vectors. Faults Test Vectors t1t2t3t4t5 f1 f2 f3 f4 f5 f6 f7 f Example: Fault Syndrome (Signature) ‘1’ → detected (fail) ‘0’ → not detected (pass)

10/28/2009VLSI Design & Test Seminar77 Full-Response Dictionary Faults Output Responses t1t2t3t4t5 f1 f2 f3 f4 f5 f6 f7 f ‘1’ → detected ‘0’ → not detected Fault Syndrome For each vector, store the fault detection data for all outputs. Total storage requirement: F  T  O bits, where F is number of faults, T is number of vectors and O is number of outputs. Example: 2 outputs

10/28/2009VLSI Design & Test Seminar88 Motivation for Diagnostic Test Set Minimization  The amount of data in a full-response dictionary is (F  T  O).  Previous work on dictionary compaction has been concentrated on managing the dictionary organization and encoding.  Data in a full-response dictionary can be optimized by minimizing the number of vectors in the diagnostic test set.

10/28/2009VLSI Design & Test Seminar99 Faults Output Responses T1T2T3T4T5 F F F F F F F F Faults Output Responses T1T2T3T4T F1 F2 F3 F4 F5 F6 F7 F Fault Diagnostic Table  We compact the full-response dictionary into a diagnostic table, which contains information on detection and distinguishability of faults. Example: Consider a circuit with 2 outputs, having 8 faults that are detected and diagnosed by 5 test vectors Full-response Dictionary Fault Diagnostic Table

10/28/2009VLSI Design & Test Seminar10 Diagnostic ILP Subject to constraints: Objective: minimize integer [0, 1], j = 1, 2,..., Jvjvj i = 1, 2,..., K (2) (4) (1) If v j = 1, then vector j is included in the minimized vector set If v j = 0, then vector j is not included in the minimized vector set K is the number of faults in a combinational circuit J is the number of vectors in the unoptimized vector set coefficient a ij ≥ 1 only if the fault i is detected by vector j, else it is 0 k = 1, 2,..., K-1 p = k+1,..., K (3) Fault number ( k) Vector number ( j ) J K

10/28/2009VLSI Design & Test Seminar11 Independent Faults [1] : Two faults are independent if and only if they cannot be detected by the same test vector. T(f 1 ) T(f 2 ) f 1 and f 2 are independent f 1 and f 2 are not independent T(f 1 ) T(f 2 ) [1] S. B. Akers, C. Joseph, and B. Krishnamurthy, “On the Role of Independent Fault Sets in the Generation of Minimal Test Sets,” Proc. International Test Conf., 1987, pp. 1100–1107. Generalized Fault Independence (Vector-Specific, Multiple- Outputs): A pair of faults detectable by a vector set V is said to be independent with respect to vector set V, if there is no single vector that detects both faults and produces an identical output response. Fault Independence

10/28/2009VLSI Design & Test Seminar12 Fault detection Table Fault diagnostic Table (a) Fault independence (b) Generalized fault independence Example (Two-Output Circuit) Guaranteed diagnosis

10/28/2009VLSI Design & Test Seminar13 Effect of Generalized Independence Relation on the Constraint Set Sizes

10/28/2009VLSI Design & Test Seminar14 Phase-1: Use existing ILP minimization technique to obtain a minimal detection test set from the given unoptimized test set. Find the faults not diagnosed by the minimized detection test set. Phase-2: Run the diagnostic ILP on the remaining unoptimized test set to obtain a minimal set of vectors to diagnose the undistinguished faults from Phase-1. Minimal detection test set of Phase-1 Minimal set of diagnostic vectors from Phase-2 Complete diagnostic test set Two-Phase Method

10/28/2009VLSI Design & Test Seminar15 Comparison Between 1-Step Diagnostic ILP Run and 2-Phase Method Complete Diagnostic Test Set 4-b ALU c17 c432 c880

10/28/2009VLSI Design & Test Seminar16 Results SUN Fire 280R, 900 MHz Dual Core machine ATPG – ATALANTA Fault Simulator – HOPE AMPL Package with CPLEX solver for formulating and solving Linear Programs

10/28/2009VLSI Design & Test Seminar17 Circuit No. of faults Phase-1Phase-2 Optimized diagnostic test set Original unoptim. Vectors* Minimal detection tests No. of undiag. faults No. of unoptim. vectors No. of constraints Minimized additional vectors 4b ALU c c c c c c c c c c c Phase Method * M. A. Shukoor, Fault Detection and Diagnostic Test Set Minimization, Master’s thesis, Auburn University, ECE Department, May * M. A. Shukoor and V. D. Agrawal, “A Primal-Dual Solution to the Minimal Test Generation Problem,” Proc. 12th VLSI Design and Test Symp., 2008, pp. 169–179.

10/28/2009VLSI Design & Test Seminar18 Diagnostic Characteristics of Minimized Complete Diagnostic Test Set 1 Circuit 2 Total Vectors 3 No. of Faults 4 Uniquely Diagnosed Faults 5 No. of CEFS 6 Undiag. Faults (3 – 4) 7 No. of Syndromes (4 + 5) 8 Maximum Faults per Syndrome 9 Diagnostic Resolution 4b ALU c c c c c c c c c c c

10/28/2009VLSI Design & Test Seminar19 2-Phase vs. Previous Work Circuit Pass-fail dictionary compaction [1] 2-Phase Approach [This work] Fault coverage % Minimized vectors Undisting. fault Pairs CPU s Fault coverage % Minimized vectors Undisting. Fault Pairs CPU s c c c c c c c c c c [1] Y. Higami and K. K. Saluja and H. Takahashi and S. Kobayashi and Y. Takamatsu, “Compaction of Pass/Fail-based Diagnostic Test Vectors for Combinational and Sequential Circuits,” Proc. ASPDAC, 2006, pp

10/28/2009VLSI Design & Test Seminar20 Conclusion Minimization of a diagnostic test set is carried out without loss of diagnostic resolution of a full-response dictionary. We have formulated the diagnostic ILP which is an exact method to minimize a diagnostic test set. The newly defined generalized independence relation between pairs of faults reduces the number of fault-pairs that needs to be distinguished. The two-phase approach has polynomial time complexity (in empirical sense) and is effective in producing compact diagnostic test sets. New problems to be solved: –Define a diagnostic coverage metric similar to the stuck-at detection coverage. –Develop ATPG algorithms to find a distinguishing test for a pair of faults.

10/28/2009VLSI Design & Test Seminar21 Thank you …