1 17 th May 2007 C.P. Ward Sensitivity of ZZ->llnunu to Anomalous Couplings Pat Ward University of Cambridge.

Slides:



Advertisements
Similar presentations
W Physics at LEP Paolo Azzurri Pisa (ALEPH-CMS ) Hanoi August 7, th Rencontres du Vietnam New Views in Particle Physics.
Advertisements

LPSC - GrenobleJulien MOREL 1 Z'  e + e - discovery potential computation Julien MOREL ATLAS Exotics group IN2P3 – CNRS - LPSC - Grenoble 18 / 09 / 2007.
Investigating the Production of W and Z bosons at LHCb Stephanie Donleavy.
1 Rutherford Appleton Laboratory The 13th Annual International Conference on Supersymmetry and Unification of the Fundamental Interactions Durham, 2005.
1 6 th September 2007 C.P. Ward Sensitivity of ZZ→llνν to Anomalous Couplings Pat Ward University of Cambridge Neutral Triple Gauge Couplings Fit Procedure.
Higgs Detection Sensitivity from GGF H  WW Hai-Jun Yang University of Michigan, Ann Arbor ATLAS Higgs Meeting October 3, 2008.
1 24 th September 2007 C.P. Ward Sensitivity of ZZ→llνν to Anomalous Couplings Pat Ward University of Cambridge Neutral Triple Gauge Couplings Fit Procedure.
WW  e ν 14 April 2007 APS April Meeting WW/WZ production in electron-neutrino plus dijet final state at CDFAPS April Meeting April 2007 Jacksonville,
1 Viktor Veszprémi (Purdue University, CDF Collaboration) SUSY 2005, Durham Search for the SM Higgs Boson at the CDF Experiment Search for the SM Higgs.
Data-based background predictions using forward events Victor Pavlunin and David Stuart University of California Santa Barbara July 10, 2008.
1 4 th June 2007 C.P. Ward Update on ZZ->llnunu Analysis and Sensitivity to Anomalous Couplings Tom Barber, Richard Batley, Pat Ward University of Cambridge.
Vector Boson Scattering At High Mass
1 ZH Analysis Yambazi Banda, Tomas Lastovicka Oxford SiD Collaboration Meeting
Irakli Chakaberia Final Examination April 28, 2014.
1 A Preliminary Model Independent Study of the Reaction pp  qqWW  qq ℓ qq at CMS  Gianluca CERMINARA (SUMMER STUDENT)  MUON group.
ESFA/DESY LC Workshop 1 Klaus Mönig and Jadranka Sekaric Klaus Mönig and Jadranka Sekaric DESY - Zeuthen MEASUREMENT OF TGC IN e  COLLISIONS AT TESLA.
Gideon Bella Tel Aviv University On behalf of the ATLAS collaboration ATL-PHYS-PUB ATL-PHYS-PUB Prospects of measuring ZZ and WZ polarization.
Bounding the Higgs Width using Interferometry L. Dixon Bounding the Higgs widthRADCOR Lance Dixon (SLAC) with Ye Li [ ] and Stefan Höche.
Higgs boson spin/CP at LHC N. Godinovic (FESB-Split) on behalf of CMS collaboration Outline: Motivation S CP observables Significane for exclusion non.
1 HEP 2008, Olympia, Greece Ariadni Antonaki Dimitris Fassouliotis Christine Kourkoumelis Konstantinos Nikolopoulos University of Athens Studies for the.
Sensitivity Prospects for Light Charged Higgs at 7 TeV J.L. Lane, P.S. Miyagawa, U.K. Yang (Manchester) M. Klemetti, C.T. Potter (McGill) P. Mal (Arizona)
Trilinear Gauge Couplings at TESLA Photon Collider Ivanka Božović - Jelisavčić & Klaus Mönig DESY/Zeuthen.
14-18 November, PrahaECFA/DESY Linear Collider Workshop 1 TRILINEAR GAUGE COUPLINGS AT PHOTON COLLIDER - e  mode DESY - Zeuthen Klaus Mönig and Jadranka.
Measurement of the branching ratios for Standard Model Higgs decays into muon pairs and into Z boson pairs at 1.4 TeV CLIC Gordana Milutinovic-Dumbelovic,
Alex Melnitchouk DPF conference - May Search for Fermiophobic Higgs in the h   Channel DPF 2002, Williamsburg Alex Melnitchouk (Brown University)
Precision Cross section measurements at LHC (CMS) Some remarks from the Binn workshop André Holzner IPP ETH Zürich DIS 2004 Štrbské Pleso Štrbské Pleso.
30/Jul/20101 Research of Z generation Ken-ichiro KOIKE.
Measurements of Top Quark Properties at Run II of the Tevatron Erich W.Varnes University of Arizona for the CDF and DØ Collaborations International Workshop.
Precision Measurements of W and Z Boson Production at the Tevatron Jonathan Hays Northwestern University On Behalf of the CDF and DØ Collaborations XIII.
Higgs Reach Through VBF with ATLAS Bruce Mellado University of Wisconsin-Madison Recontres de Moriond 2004 QCD and High Energy Hadronic Interactions.
Associated production of weak bosons at LHC with the ATLAS detector
Search for the Higgs boson in H  ZZ (*) decay modes on ATLAS German D Carrillo Montoya, Lashkar Kashif University of Wisconsin-Madison On behalf of the.
1 Searches for t´  Wq and FCNC at CDF Alison Lister UC Davis For the CDF collaboration.
2° ILD Workshop Cambridge 11-14/09/08 The sensitivity of the International Linear Collider to the     in the di-muon final state Nicola D’Ascenzo University.
1 TOP MASS MEASUREMENT WITH ATLAS A.-I. Etienvre, for the ATLAS Collaboration.
Lake Louise (February 2002) Ivo van Vulpen 1 Z boson pair production Ivo van Vulpen Outline: LEP and its operation between ZZ production & final.
7/20/07Jiyeon Han (University of Rochester)1 d  /dy Distribution of Drell-Yan Dielectron Pairs at CDF in Run II Jiyeon Han (University of Rochester) For.
Jet Studies at CDF Anwar Ahmad Bhatti The Rockefeller University CDF Collaboration DIS03 St. Petersburg Russia April 24,2003 Inclusive Jet Cross Section.
October 2011 David Toback, Texas A&M University Research Topics Seminar1 David Toback Texas A&M University For the CDF Collaboration CIPANP, June 2012.
Kinematics of Top Decays in the Dilepton and the Lepton + Jets channels: Probing the Top Mass University of Athens - Physics Department Section of Nuclear.
1 Diboson production with CMS Vuko Brigljevic Rudjer Boskovic Institute, Zagreb on behalf of the CMS Collaboration Physics at LHC Cracow, July
Vector boson scattering at CMS (LHC)
Drell-Yan Spectrum and PDFs Dimitri Bourilkov University of Florida Di-lepton Meeting, LPC, FNAL, October 2, 2008.
Viktor Veszpremi Purdue University, CDF Collaboration Tev4LHC Workshop, Oct , Fermilab ZH->vvbb results from CDF.
Recent Electroweak Results from Tevatron Junjie Zhu State University of New Stony Brook For the CDF and DØ Collaborations ASPEN 2008 January 15,
Investigation on CDF Top Physics Group Ye Li Graduate Student UW - Madison.
Study of Diboson Physics with the ATLAS Detector at LHC Hai-Jun Yang University of Michigan (for the ATLAS Collaboration) APS April Meeting St. Louis,
1 Search for ZZZ Anomalous Triple Gauge Couplings at CDF Run II Matthew Norman, Shih-Chieh Hsu, Elliot Lipeles, Mark Neubauer, Frank Würthwein University.
The study of q q production at LHC in the l l channel and sensitivity to other models Michihisa Takeuchi ~~ LL ± ± (hep-ph/ ) Kyoto Univ. (YITP),
Sensitivity Study on Top Quark Pair Resonance Search
Proposals for near-future BG determinations from control regions
Measurement of SM V+gamma by ATLAS
Generator Study of Tevatron collider
Early EWK/top measurements at the LHC
First Evidence for Electroweak Single Top Quark Production
Investigation on Diboson Production
W Charge Asymmetry at CDF
Prospects for sparticle reconstruction at new SUSY benchmark points
Strong Electroweak Symmetry Breaking from
Higgs Vector Boson Fusion Production and Detection at the Tevatron
W/Z and Di-Boson Results from ATLAS Srivas Prasad Harvard University On behalf of the ATLAS Collaboration Pheno Madison, Wisconsin May 09, 2011.
W/Z and Di-Boson Results from ATLAS Srivas Prasad Harvard University On behalf of the ATLAS Collaboration Pheno Madison, Wisconsin May 09, 2011.
Search for Narrow Resonance Decaying to Muon Pairs in 2.3 fb-1
T. Dai, J. Liu, L. Liu, Y. Wu, B. Zhou, J. Zhu
Testing Anomalous Gauge Couplings of
Search for Z’ and New Particles Decaying to Z0+jets such as b’
Experimental and theoretical Group Torino + Moscow
Gluon Gluon to jpsi jpsi
Study of Top properties at LHC
Presentation transcript:

1 17 th May 2007 C.P. Ward Sensitivity of ZZ->llnunu to Anomalous Couplings Pat Ward University of Cambridge

2 17 th May 2007 C.P. Ward Introduction Advantage of ZZ->llnunu c.f. ZZ->llll Larger branching ratio: 6 times as many events before cuts Disadvantage Very large backgrounds from Z+jets and ttbar Investigate sensitivity of limits on anomalous couplings to background level and systematic error on background This is very preliminary ‘work in progress’

3 17 th May 2007 C.P. Ward Anomalous Couplings ZZZ and ZZg vertices forbidden in SM Production of on-shell ZZ probes ZZZ and ZZg anomalous couplings: f4Z, f5Z, f4g f5g All = 0 in SM Forbidden in SM

4 17 th May 2007 C.P. Ward Anomalous Couplings f4 violate CP; helicity amplitudes do not interfere with SM; cross-sections depend on f4**2 and sign cannot be determined f5 violate P; do interfere with SM Couplings depend on energy. Usual to introduce a form factor to avoid violation of unitarity: f(s’) = f0 / (1 + s’/Lambda**2)**n Studies below use n=3, Lambda = 2 TeV Also assume couplings are real and only one non-zero

5 17 th May 2007 C.P. Ward AC Monte Carlo Study AC using LO Monte Carlo of Baur and Rainwater First compare SM predictions for ZZ->eenunu cross-section with Pythia: CTEQ4L pdfs; 76 < mZ < 106 GeV BRPythia (no showers ) Pythia No cuts125.5 fb126.3 fb pT(e)> 15 GeV |eta(e)| 50 GeV 35.1 fb 34.5 fb 39.5 fb

6 17 th May 2007 C.P. Ward Comparison with Pythia

7 17 th May 2007 C.P. Ward PDF dependence Comparisons with Pythia used out-of-date CTEQ4L because BR program used pdflib Have now modified it to use LHAPDF Following results use CTEQ6LL pdf setZZ->eenunu with cuts CTEQ4L36.85 fb CTEQ6LL36.51 fb MRST2001LO36.90 fb

8 17 th May 2007 C.P. Ward Signature of Anomalous Couplings Anomalous couplings produce increase in ZZ invariant mass, Z pT and lepton pT distributions For ZZ->llnunu can use high pT(Z) cross- section to obtain limit, or fit Z pT distribution e.g above for ZZ->eenunu with pT(e) > 15 GeV, |eta(e)| < 2.5

9 17 th May 2007 C.P. Ward Limits from Cross-section Measurement First consider measurement of ZZ->llnunu cross- section for pT(Z) > pTmin N.B. this is LO: pT(ll) = pTmiss Take pT(e) > 15 GeV, |eta(e)| < 2.5, pTmin = 50 GeV SM: 72.7 fb -> 727 signal events for 10 fb-1 Calculate cross-section, hence expected events as function of f4Z E.g. f4Z = 0.01: 76.2 fb -> 762 signal events

10 17 th May 2007 C.P. Ward Limits from Cross-section Measurement Use chi-squared comparison between expected and ‘observed’ (=SM) numbers of events to determine 95% c.l. on coupling (assume only one coupling non-zero) Calculate limit as function of ratio of background to SM signal First assume statistical errors only, then consider effect of a systematic error on the background

11 17 th May 2007 C.P. Ward pTmiss > 50 GeV; statistical errors only Little dependence on background fraction

12 17 th May 2007 C.P. Ward pTmiss > 50 GeV; 20% systematic error on background Strong dependence on background: limits independent of luminosity for high background

13 17 th May 2007 C.P. Ward pTmiss > 150 GeV; statistical errors only Limits much better than using pTmiss > 50 GeV

14 17 th May 2007 C.P. Ward Limits from Fits to pT Distribution Limits from a simple cross-section measurement depend on pT cut – harder pT cut can give better limit despite much lower statistics Therefore better to fit pT distribution Results below are for ZZ->llnunu with pT(l)>20 GeV, |eta(l)|<2.5 Use BR program to generate pT distributions for several values of couplings (only one non-zero at a time) In each pT bin fit cross-section to quadratic in coupling to obtain distribution at arbitrary value

15 17 th May 2007 C.P. Ward Cross-section v f4Z in pT bins

16 17 th May 2007 C.P. Ward Cross-section v f5Z in pT bins

17 17 th May 2007 C.P. Ward Limits from Fits to pT Distribution Create ‘fake data’ sample: Calculate expected SM events in each pT bin Add background – constant fraction of SM Apply Gaussian smearing Construct error matrix Statistical errors plus systematic error on background assumed fully correlated Fit fake data sample One parameter fit to f4Z**2 or f5Z 95 % c.l. from X**2 – X**2min = 3.84

18 17 th May 2007 C.P. Ward Limits from Fits to pT Distribution Generate 1000 fake data samples for each value of background fraction and each value of background systematic Mean X**2/dof = 1 Mean f4**2 = 0 As expected

19 17 th May 2007 C.P. Ward Results for 100 fb-1, eff = 1.0 from Fit in Range 50 GeV < pT < 500 GeV

20 17 th May 2007 C.P. Ward Results for 100 fb-1, eff = 1.0 from Different Fit Ranges and Binning

21 17 th May 2007 C.P. Ward Summary so far…. Limits worse with more background – but not dramatically so Limits worse with large systematic error on background – but not dramatically so BUT this was assuming constant background – unrealistic AC have little effect at low pT, so limits not too sensitive to overall normalization of pT distribution Limits depend on binning of pT distribution – will need to be optimized for given integrated luminosity

22 17 th May 2007 C.P. Ward Next Steps Investigate effect of more realistic (steeply falling) background distribution Investigate optimal binning Estimate limits for expected experimental efficiency/background Set up framework for 2-D couplings Think how we are going to predict expected pT distribution (reweighting, fast MC etc.)