The IUPAC water vapour database Jonathan Tennyson HITRAN meeting Department of Physics and Astronomy Harvard University College London June 2008
A Database of Water Transitions from Experiment and Theory Members: Jonathan Tennyson (chair), P.F. Bernath, A. Campargue, M.R. Carleer, A.G. Császár, R.R. Gamache, J. Hodges, (A. Jenouvrier), O. Naumenko, O.L. Polyansky, L.S. Rothman, R.A. Toth, A.C. Vandaele, N.F. Zobov L Brown, L Daumont Objective: Develop a compilation of experimental and theoretical line positions, energy levels, intensities, and line-shape parameters for water vapour and all of its major isotopologues Establish a database structure that retains and enables access to all critically evaluated data
IUPAC Task group Database in parts: 1.Energy levels and frequencies (MARVEL): progress update 2.Line intensities is best way forward ab initio? 3.Pressure dependence Gamache et al 4.Archive: experimental data and calculated linelists. Alex Fazliev Will use: multiple data sources for each region back filled by theory
“Water continuum”: Anomalous Features 6.4*10 19 molecules cm -3 T = 95 C All fitting parameters (except water database) identical for both cases. ‘Continuum Feature’ (HITRAN) No feature (UCL) A.J.L. Shillings and R.L. Jones, University of Cambridge
Iodine Measurements Retrieved I 2 and NO 2 concentrations depend on the water database employed. Disagreement for I 2 up to ± 20 ppt, (which is chemically significant), NO 2 disagreement up to ± 0.65 ppb (UCL 08 gives better agreement with independent chemiluminescence NO 2 measurements). Measurements performed during RHaMBLe campaign, Roscoff, France, Iodine released by certain seaweeds when under stress (low tide). Emitted I 2 leads to significant aerosol production and has an impact on ozone chemistry. Need accurate I 2 measurements to better understand detailed mechanisms involved. A.J.L. Shillings, S.M. Ball and R.L. Jones, University of Cambridge
MARVEL: inverse, experimental rovibrational energy levels Measured Active Rotational-Vibrational Energy Levels Rotational-Vibrational Energy Levels T. Furtenbacher, A. G. Császár, J. Tennyson, J. Mol. Spectrosc. 245, 115 (2007) T. Furtenbacher, A. G. Császár, J. Quant. Spectr. Rad. Transfer 109, 1234 (2008) Based on: all 1. X-matrix protocol of Flaud et al (1976) applied to all spectra 2. Relatively robust error method of Watson
EiEi EjEj Assignment i,j ij = X × E × Solve for E (least-squares with experimental uncertainties of the ij ) obtain experimentally derived term values E i, E j,.... Observed transition wavenumbers ij with assignments and uncertainties The ij can be determined by term values E i, E j,.... =
Spectroscopic networks of water Water (except for HDO) has two main SNs: (K a + K c + n 3 ) is even (K a + K c + n 3 ) is odd (para)(ortho) „magic number”
MARVEL steps (1)Collect, validate, and compile all available measured transitions, including their systematic and unique assignments and uncertainties, into a single database. (2)Based on the given database of assigned transitions, determine those energy levels of the given species which belong to a particular spectroscopic network (SN). (3) Cleansing of the database (misassignments, mislabelings). (4)Within a given SN, set up a vector containing all the experimentally measured transitions selected, another one comprising the requested measured energy levels, and a design matrix which describes the relation between the transitions and the energy levels. (5)Solve the resulting set of linear equations corresponding to the chosen set of vectors and the inversion matrix many times (robust reweighting). During solution of the set of linear equations uncertainties in the measured transitions can be incorporated which result in uncertainties of the energy levels determined.
Input database Johns Johns Johns Johns Johns Johns Johns Johns Johns Johns Johns Johns.12 … Java-based test facility: Freq/cm -1 unc./10 -6 cm -1 assignment unique label other info
[UC = under construction ] Go up HOME Home H 2 16 O (UC) H 2 17 O H 2 18 O (UC) HD 16 O HD 17 O HD 18 O D 2 16 O (UC) D 2 17 O (UC) D 2 18 O (UC) MARVEL levels and transitions UPLOAD (UC) H 2 16 O Data Manager : Jonathan Tennyson Number of MARVEL levels : Number of measured transitions : H 2 17 O Data Manager : Tibor Furtenbacher & Attila G. Császár Number of MARVEL levels : Number of measured transitions : Details >>> H 2 18 O Data Manager : Nikolai Zobov Number of MARVEL levels : Number of measured transitions : HD 16 O Data Manager : Boris Voronin Number of MARVEL levels : Number of measured transitions : Details >>> HD 17 O Data Manager : Alain Campargue Number of MARVEL levels : Number of measured transitions : Details >>> HD 18 O Data Manager : Alain Campargue Number of MARVEL levels : Number of measured transitions : Details >>> D 2 16 O Data Manager : Olga Naumenko Number of MARVEL levels : Number of measured transitions : Marvel web page:
Observed Transitions of H 2 17 O Interval (cm -1 )ReferencesDownload J. Steenbeckeliers, CRAS Paris B273 (1971) F.C. De Lucia, J. Mol. Spectrosc. 56 (1975) PDF F. Matsushima, H. Nagase, T. Nakauchi, H. Odashima, and K. Takagi, J. Mol. Spectrosc. 193 (1999) 217 – 223 PDF J. Kauppinen and E. Kyro, J. Mol. Spectrosc. 84 (1980) PDF G. Guelachvili, J. Opt. Soc. Am. 73 (1983) PDF SISAM database: A.-W. Liu, S.-M. Hu, C. Camy-Peyret, J.-Y. Mandin, O. Naumenko, and B. Voronin, J. Mol. Spectry. 237 (2006) PDF A. Jenouvrier, L. Daumont, L. Regalia-Jarlot, V. G. Tyuterev, M. Carleer, A. C. Vandaele, S. Mikhailenko, S. Fally, J. Quant. Spectrosc. Rad. Transfer 105 (2007) PDF P. Macko, D. Romanini, S. N. Mikhailenko, O. V. Naumenko, S. Kassi, A. Jenouvrier, Vl. G. Tyuterev, and A. Campargue, J. Mol. Spectry. 227 (2004) PDF C. Camy-Peyret, J.-M. Flaud, J.-Y. Mandin, A. Bykov, O. Naumenko, L. Sinitsa,and B. Voronin, J. Quant. Spectrosc. Rad. Transfer 61 (1999) PDF M. Tanaka, O. Naumenko, J. W. Brault, and J. Tennyson, J. Mol. Spectrosc. 234 (2005) PDF O. Naumenko, M. Sneep, M. Tanaka, S.V. Shirin, W. Ubachs, and J. Tennyson, J. Mol. Spectrosc. 237 (2006) PDF Observed Transitions of H 2 17 O
n1n2n3n1n2n3 MARVELNo. of levels (48) (31) (21) (11) [ ] (46) (3) [ ] (547) (32) (20) (185) (1449) (925) (966) (926) (926) (966) (6018) (926) (926) (1019) (926) (926) (370) H 2 17 O vibrational energy levels
MARVELlous water H 2 16 OH 2 17 OH 2 18 OHD 16 O No. of transitions collected~ Maximum J Highest VBO (cm -1 )~ No. of HITRAN transitions Concordant transitions Absent HITRAN transitions Characteristics of MARVEL energy levels: highly accurate highly incomplete as we move up on the energy ladder
Pure rotational energy levels for water T. Furtenbacher, A. G. Császár, J. Quant. Spectr. Rad. Transfer 109, 1234 (2008) J Ka KcJ Ka Kc H 2 16 OH 2 17 OH 2 18 O CVRQDFIS3MARVELCVRQDFIS3MARVELCVRQDFIS3MARVEL ,795 23, ,774 23, ,756 23, ,13837,13937, ,93236,93336, ,74936,75036, ,37242,37342, ,188 42, ,024 42, ,094 70, ,07770,00870, ,930 69, ,49979,50079, ,23079,23179, ,99178,99278, ,17895,17995, ,97394,97494, ,791 94, ,903134,906134, ,14 134, ,478133,480133, ,165136,168136, ,43 135, ,785134,788134, ,767136,768136, ,54 136, , , ,284142,285142, ,90 141, ,573141,574141, ,371173,372173, , ,116173, ,888172,889172, ,306206,309206, , , , ,760204,763204, ,161212,163212, , ,443211, ,804210,806210, ,222285,227285, , , , ,099282,103282, ,422285,426285, , , , ,311282,316282,
Energies/frequencies Have well developed protocol H 2 17 O, H 2 18 O and HD 16 O (nearly) complete H 2 16 O underway: all available data input, much missing Labeling remains an issue
Required to better than 1% for remote sensing Very few laboratory determinations this accurate Problems with consistency between measurements Issues with dynamic range of any measurements New ab initio CVR dipole accurate to about 3% (hope to do better soon ) Intensities:
Lodi & Tennyson, JQSRT, 109, 1219 (2008). Intensities of pure rotational transitions Calculations using CVR dipole surface of Lodi et al JCP, 128, (2008)
Lodi & Tennyson, JQSRT, 109, 1219 (2008).
CVR calc = Lodi & Tennyson, unpublished. DLR = Coudert, Wagner et al (JMS in press) Bending fundamental: 1250 – 1750 cm -1
Analysis of allowed and forbidden rotational transitions using: (Lodi & Tennyson, JQSRT, 109, 1219 (2008). ). 555 allowed, 846 forbidden lines > 10(-28) molecule/cm at 296 K 50 of which not in HITRAN or JPL Good general agreement with HITRAN for these Significant systematic errors identified in JPL database Subsequent analysis of bending fundamental region suggests problem with strong lines in HITRAN Use purely ab initio calculated intensities to solve these problems? (Resonances?!) Intensities: “UCL linelists” Multiple sources for single region Back filled for missing transitions with theory Will be IUPAC convention, HITRAN too?
A Database of Water Transitions from Experiment and Theory Members: Jonathan Tennyson (chair), P.F. Bernath, A. Campargue, M.R. Carleer, A.G. Császár, R.R. Gamache, J. Hodges, A. Jenouvrier, O. Naumenko, O.L. Polyansky, L.S. Rothman, R.A. Toth, A.C. Vandaele, N.F. Zobov, L. Brown Also: L Daumont, AZ Fazliev, T Furtenbacher, IF Gourdon, SN Mikhailenko, SV Shirin, BA Voronin, S Voronina, A Al Derzi UCL intensity work: L Lodi, M Barber, RN Tolchenov