The IUPAC water vapour database Jonathan Tennyson HITRAN meeting Department of Physics and Astronomy Harvard University College London June 2008.

Slides:



Advertisements
Similar presentations
Best spectral regions: ARIES & TAFTS Up-Down, at 4 km Downwelling, at 4 km 1) I err = I* ( I Lines *2 ) 0.5 W/(m 2 * cm -1 ) 2) Surface.
Advertisements

BBCRDS Measurements of Water Vapour: Inferred Upper Limits for Water Dimer Absorption in the 610 and 750 nm regions A.J.L. Shillings 1, S.M. Ball 2 and.
Water monomer linelists Matt Barber Jonathan Tennyson Department of Physics and Astronomy University College London December 2009.
CAVIAR – Continuum Absorption by Visible and Infrared Radiation and its Atmospheric Relevance PI: Keith Shine Department of Meteorology, University of.
Theoretical work on the water monomer and dimer Matt Barber Jonathan Tennyson University College London 13 th May 2010
Theoretical work on the water monomer and dimer Matt Barber Jonathan Tennyson University College London December 2008.
The HITRAN Molecular Database
High sensitivity CRDS of the a 1 ∆ g ←X 3 Σ − g band of oxygen near 1.27 μm: magnetic dipole and electric quadrupole transitions in different bands of.
The role of asymptotic states in H 3 + Jonathan Tennyson Department of Physics and Astronomy Royal Society University College London Jan 2006 HPCx supercomputer:
Analysis of an 18 O and D enhanced lab water spectrum using variational calculations of HD 18 O and D 2 18 O spectra Michael J Down - University College.
A L INE L IST FOR H YDROGEN S ULPHIDE (H 2 S) Ala’a A. A. Azzam J. Tennyson and S. Yurchencko Department of Physics and Astronomy, University College London,
A database for water transitions from experiment and theory Jonathan Tennyson HITRAN meeting Department of Physics and Astronomy Harvard University College.
Analysis of the 18 O 3 CRDS spectra in the 6000 – 7000 cm -1 spectral range : comparison with 16 O 3. Marie-Renée De Backer-Barilly, Alain Barbe, Vladimir.
The Water Molecule: Line Position and Line Intensity Analyses up to the Second Triad L. H. Coudert, a G. Wagner, b M. Birk, b and J.-M. Flaud a a Laboratoire.
High-Lying Rotational Levels of Water obtained by FIR Emission Spectroscopy L. H. Coudert, a M.-A. Martin, b O. Pirali, b D. Balcon, b and M. Vervloet.
Theoretical work on the water monomer and dimer Matt Barber Jonathan Tennyson University College London September 2009.
S&MPO linelist of 16 O 3 in the range 6000 – 7000 cm -1. M.-R. De Backer-Barilly #, Semen N. Mikhailenko*, Yurii Babikov*, Alain Campargue §, Samir Kassi.
Some Details of the Upcoming HITRAN Updates for the New Edition of 2008 Laurence S. Rothman, Iouli E. Gordon Harvard-Smithsonian Center for Astrophysics,
A. Barbe, M.R. De Backer-Barilly, Vl.G. Tyuterev, A. Campargue 1, S.Kassi 1 Updated line-list of 16 O 3 in the range 5860 – 7000 cm -1 deduced from CRDS.
Simulating the spectrum of the water dimer in the far infrared and visible Ross E. A. Kelly, Matt J. Barber, Jonathan Tennyson Department of Physics and.
Theoretical work on the water monomer Matt Barber Jonathan Tennyson University College London
High-accuracy ab initio water line intensities Lorenzo Lodi University College London Department of Physics & Astronomy.
Towards New Line List of Magnetic Dipole and Electric Quadrupole Transitions in the Band of Oxygen Iouli E. Gordon Laurence S. Rothman Samir Kassi Alain.
SPECTRA, an Internet Accessible Information System for Spectroscopy of Atmospheric Gases Semen MIKHAILENKO, Yurii BABIKOV, Vladimir.
IR EMISSION SPECTROSCOPY OF AMMONIA: LINELISTS AND ASSIGNMENTS. R. Hargreaves, P. F. Bernath Department of Chemistry, University of York, UK N. F. Zobov,
Experimental Energy Levels of HD 18 O and D 2 18 O S.N. MIKHAILENKO, O.V. NAUMENKO, S.A. TASHKUN Laboratory of Theoretical Spectroscopy, V.E. Zuev Institute.
First high resolution analysis of the 5 3 band of nitrogen dioxide (NO 2 ) near 1.3 µm Didier Mondelain 1, Agnès Perrin 2, Samir Kassi 1 & Alain Campargue.
Calculation of rovibrational H 3 + lines. New level of accuracy Slides of invited talk at Royal Society conference on H 3 + Oleg L. Polyansky 1,2 1 Institute.
Towards perfect water line intensities Lorenzo Lodi University College London, Dept of physics & Astronomy, London, UK.
Molecular Spectroscopy Symposium June 2011 ROTATIONAL SPECTROSCOPY OF HD 18 O John C. Pearson, Shanshan Yu, Harshal Gupta, and Brian J. Drouin,
New H 2 16 O measurements of line intensities around 1300 cm -1 and 8800 cm - 1 Oudot Charlotte Groupe de Spectrométrie Moléculaire et Atmosphérique Reims,
Jonathan Tennyson Physics and Astronomy UCL Paris, Nov 2008 Molecular linelists for extrasolar planets Artist’s impression of HD189733b C. Carreau, ESA.
Hot summer of HITRAN2008 I. E. Gordon L. S. Rothman.
Emission Spectra of H 2 17 O and H 2 18 O from 320 to 2500 cm -1 Semen MIKHAILENKO 1, Georg MELLAU 2, and Vladimir TYUTEREV 3 1 Laboratory of Theoretical.
Theoretical Modelling of the Water Dimer: Progress and Current Direction Ross E. A. Kelly, Matt Barber, & Jonathan Tennyson Department of Physics & Astronomy.
“Global Fit” of the high resolution infrared data of D 2 S and HDS molecules O. N. Ulenikov, E. S. Bekhtereva Physical Chemistry, ETH-Zurich, CH-8093 Zurich,
The IUPAC Critical Evaluation of the Ro-vibrational Spectra of Water Vapor: Results for H 2 18 O, H 2 17 O, and HD 16 O Jonathan Tennyson University College.
Predicting half-widths and line shifts for water vapor transitions on the HITEMP database Robert R. Gamache a, Laurence S. Rothman b, and Iouli E. Gordon.
Xinchuan Huang, 1 David W. Schwenke, 2 Timothy J. Lee 2 1 SETI Institute, Mountain View, CA 94043, USA 2 NASA Ames Research Center, Moffett Field, CA 94035,
Towards experimental accuracy from the first principles Ab initio calculations of energies of small molecules Oleg L. Polyansky, L.Lodi, J.Tennyson and.
Evaluation of the Experimental and Theoretical Intensities of Water- Vapor Lines in the 2 µm Region Using Spectra from the Solar- Pointing FTS Iouli Gordon,
MICROWAVE SPECTRUM OF 12 C 16 O S.A. TASHKUN and S.N. MIKHAILENKO, Laboratory of Theoretical Spectroscopy, V.E. Zuev Institute of Atmospheric Optics, Zuev.
Line list of HD 18 O rotation-vibration transitions for atmospheric applications Semen MIKHAILENKO, Olga NAUMENKO, and Sergei TASHKUN Laboratory of Theoretical.
A.Z. Fazliev, N.A.Lavrentiev, A.I.Privezentsev V.E. Zuev Institute of Atmospheric Optics SB RAS, Academician Zuev Square 1, Tomsk , Russia
CDSD (Carbon Dioxide Spectroscopic Databank): Updated and Enlarged Version for Atmospheric Applications Sergei Tashkun and Valery Perevalov Laboratory.
Deuterium enriched water vapor Fourier Transform Spectroscopy: the cm -1 spectral region. (1) L. Daumont, (1) A. Jenouvrier, (2) S. Fally, (3)
Preliminary modeling of CH 3 D from 4000 to 4550 cm -1 A.V. Nikitin 1, L. R. Brown 2, K. Sung 2, M. Rey 3, Vl. G. Tyuterev 3, M. A. H. Smith 4, and A.W.
Manfred Birk, Georg Wagner Remote Sensing Technology Institute (IMF) Deutsches Zentrum für Luft- und Raumfahrt (DLR) Lorenzo Lodi, Jonathan Tennyson Department.
A. Barbe, M.-R. De Backer-Barilly, Vl.G. Tyuterev Analysis of CW-CRDS spectra of 16 O 3 : 6000 to 6200 cm -1 spectral range Groupe de Spectrométrie Moléculaire.
Calculation of lineshape parameters for self- broadening of water vapor transitions via complex Robert-Bonamy theory Bobby Antony, Steven Neshyba* & Robert.
Xinchuan Huang, 1 David W. Schwenke, 2 Timothy J. Lee 2 1 SETI Institute, Mountain View, CA 94043, USA 2 NASA Ames Research Center, Moffett Field, CA 94035,
Ro-vibrational Line Lists for Nine Isotopologues of CO Suitable for Modeling and Interpreting Spectra at Very High Temperatures and Diverse Environments.
FTS Studies Of The Isotopologues Of CO 2 Toward Creating A Complete And Highly Accurate Reference Standard Ben Elliott, Keeyoon Sung, Charles Miller JPL,
Progress Towards a High-Precision Infrared Spectroscopic Survey of the H 3 + Ion Adam J. Perry, James N. Hodges, Charles Markus, G. Stephen Kocheril, Paul.
HOT EMISSION SPECTRA FOR ASTRONOMICAL APPLICATIONS: CH 4 & NH 3 R. Hargreaves, L. Michaux, G. Li, C. Beale, M. Irfan and P. F. Bernath 1 Departments of.
Laser spectroscopic study of CaH in the B 2 Σ + and D 2 Σ + state Kyohei Watanabe, Kanako Uchida, Kaori Kobayashi, Fusakazu Matsushima, Yoshiki Moriwaki.
EXPERIMENTAL LINE LISTS OF HOT METHANE Image credit: Mark Garlick MONDAY 22 nd JUNE 2015 ROBERT J. HARGREAVES MICHAEL DULICK PETER F.
> ISMS 2017 > Joep Loos • P2355: Experimental line list of water vapor > Experimental line list of water vapor absorption lines in the spectral.
A New Line List for A2Σ+-X2П Electronic Transition of OH
Andy Wong Robert J. Hargreaves Peter F. Bernath Michaël Rey
Advertisement.
A. Barbe, M. R. De Backer-Barilly, Vl. G. Tyuterev, D. Romanini1, S
GEORG MELLAU1,2 and ROBERT FIELD2
Ab initio calculations of highly excited NH3 levels
Single Vibronic Level (SVL) emission spectroscopy of CHBr: Vibrational structure of the X1A and a3A  states.
An accurate and complete empirical line list for water vapor
Fourier Transform Emission Spectroscopy of CoH and CoD
F H F O Semiexperimental structure of the non rigid BF2OH molecule (difluoroboric acid) by combining high resolution infrared spectroscopy and ab initio.
Line Strength Measurements in the n2 band of H218O
Holger S. P. Müller, J. C. Pearson, S. Brünken, S. Yu,
Presentation transcript:

The IUPAC water vapour database Jonathan Tennyson HITRAN meeting Department of Physics and Astronomy Harvard University College London June 2008

A Database of Water Transitions from Experiment and Theory Members: Jonathan Tennyson (chair), P.F. Bernath, A. Campargue, M.R. Carleer, A.G. Császár, R.R. Gamache, J. Hodges, (A. Jenouvrier), O. Naumenko, O.L. Polyansky, L.S. Rothman, R.A. Toth, A.C. Vandaele, N.F. Zobov L Brown, L Daumont Objective: Develop a compilation of experimental and theoretical line positions, energy levels, intensities, and line-shape parameters for water vapour and all of its major isotopologues Establish a database structure that retains and enables access to all critically evaluated data

IUPAC Task group Database in parts: 1.Energy levels and frequencies (MARVEL): progress update 2.Line intensities is best way forward ab initio? 3.Pressure dependence Gamache et al 4.Archive: experimental data and calculated linelists. Alex Fazliev Will use: multiple data sources for each region back filled by theory

“Water continuum”: Anomalous Features 6.4*10 19 molecules cm -3 T = 95 C All fitting parameters (except water database) identical for both cases. ‘Continuum Feature’ (HITRAN) No feature (UCL) A.J.L. Shillings and R.L. Jones, University of Cambridge

Iodine Measurements Retrieved I 2 and NO 2 concentrations depend on the water database employed. Disagreement for I 2 up to ± 20 ppt, (which is chemically significant), NO 2 disagreement up to ± 0.65 ppb (UCL 08 gives better agreement with independent chemiluminescence NO 2 measurements). Measurements performed during RHaMBLe campaign, Roscoff, France, Iodine released by certain seaweeds when under stress (low tide). Emitted I 2 leads to significant aerosol production and has an impact on ozone chemistry. Need accurate I 2 measurements to better understand detailed mechanisms involved. A.J.L. Shillings, S.M. Ball and R.L. Jones, University of Cambridge

MARVEL: inverse, experimental rovibrational energy levels Measured Active Rotational-Vibrational Energy Levels Rotational-Vibrational Energy Levels T. Furtenbacher, A. G. Császár, J. Tennyson, J. Mol. Spectrosc. 245, 115 (2007) T. Furtenbacher, A. G. Császár, J. Quant. Spectr. Rad. Transfer 109, 1234 (2008) Based on: all 1. X-matrix protocol of Flaud et al (1976) applied to all spectra 2. Relatively robust error method of Watson

EiEi EjEj Assignment i,j  ij  = X × E × Solve for E (least-squares with experimental uncertainties of the  ij ) obtain experimentally derived term values E i, E j,.... Observed transition wavenumbers  ij with assignments and uncertainties The  ij can be determined by term values E i, E j,.... =

Spectroscopic networks of water Water (except for HDO) has two main SNs: (K a + K c + n 3 ) is even (K a + K c + n 3 ) is odd (para)(ortho) „magic number”

MARVEL steps (1)Collect, validate, and compile all available measured transitions, including their systematic and unique assignments and uncertainties, into a single database. (2)Based on the given database of assigned transitions, determine those energy levels of the given species which belong to a particular spectroscopic network (SN). (3) Cleansing of the database (misassignments, mislabelings). (4)Within a given SN, set up a vector containing all the experimentally measured transitions selected, another one comprising the requested measured energy levels, and a design matrix which describes the relation between the transitions and the energy levels. (5)Solve the resulting set of linear equations corresponding to the chosen set of vectors and the inversion matrix many times (robust reweighting). During solution of the set of linear equations uncertainties in the measured transitions can be incorporated which result in uncertainties of the energy levels determined.

Input database Johns Johns Johns Johns Johns Johns Johns Johns Johns Johns Johns Johns.12 … Java-based test facility: Freq/cm -1 unc./10 -6 cm -1 assignment unique label other info

[UC = under construction ] Go up HOME Home H 2 16 O (UC) H 2 17 O H 2 18 O (UC) HD 16 O HD 17 O HD 18 O D 2 16 O (UC) D 2 17 O (UC) D 2 18 O (UC) MARVEL levels and transitions UPLOAD (UC) H 2 16 O Data Manager : Jonathan Tennyson Number of MARVEL levels : Number of measured transitions : H 2 17 O Data Manager : Tibor Furtenbacher & Attila G. Császár Number of MARVEL levels : Number of measured transitions : Details >>> H 2 18 O Data Manager : Nikolai Zobov Number of MARVEL levels : Number of measured transitions : HD 16 O Data Manager : Boris Voronin Number of MARVEL levels : Number of measured transitions : Details >>> HD 17 O Data Manager : Alain Campargue Number of MARVEL levels : Number of measured transitions : Details >>> HD 18 O Data Manager : Alain Campargue Number of MARVEL levels : Number of measured transitions : Details >>> D 2 16 O Data Manager : Olga Naumenko Number of MARVEL levels : Number of measured transitions : Marvel web page:

Observed Transitions of H 2 17 O Interval (cm -1 )ReferencesDownload J. Steenbeckeliers, CRAS Paris B273 (1971) F.C. De Lucia, J. Mol. Spectrosc. 56 (1975) PDF F. Matsushima, H. Nagase, T. Nakauchi, H. Odashima, and K. Takagi, J. Mol. Spectrosc. 193 (1999) 217 – 223 PDF J. Kauppinen and E. Kyro, J. Mol. Spectrosc. 84 (1980) PDF G. Guelachvili, J. Opt. Soc. Am. 73 (1983) PDF SISAM database: A.-W. Liu, S.-M. Hu, C. Camy-Peyret, J.-Y. Mandin, O. Naumenko, and B. Voronin, J. Mol. Spectry. 237 (2006) PDF A. Jenouvrier, L. Daumont, L. Regalia-Jarlot, V. G. Tyuterev, M. Carleer, A. C. Vandaele, S. Mikhailenko, S. Fally, J. Quant. Spectrosc. Rad. Transfer 105 (2007) PDF P. Macko, D. Romanini, S. N. Mikhailenko, O. V. Naumenko, S. Kassi, A. Jenouvrier, Vl. G. Tyuterev, and A. Campargue, J. Mol. Spectry. 227 (2004) PDF C. Camy-Peyret, J.-M. Flaud, J.-Y. Mandin, A. Bykov, O. Naumenko, L. Sinitsa,and B. Voronin, J. Quant. Spectrosc. Rad. Transfer 61 (1999) PDF M. Tanaka, O. Naumenko, J. W. Brault, and J. Tennyson, J. Mol. Spectrosc. 234 (2005) PDF O. Naumenko, M. Sneep, M. Tanaka, S.V. Shirin, W. Ubachs, and J. Tennyson, J. Mol. Spectrosc. 237 (2006) PDF Observed Transitions of H 2 17 O

n1n2n3n1n2n3 MARVELNo. of levels (48) (31) (21) (11) [ ] (46) (3) [ ] (547) (32) (20) (185) (1449) (925) (966) (926) (926) (966) (6018) (926) (926) (1019) (926) (926) (370) H 2 17 O vibrational energy levels

MARVELlous water H 2 16 OH 2 17 OH 2 18 OHD 16 O No. of transitions collected~ Maximum J Highest VBO (cm -1 )~ No. of HITRAN transitions Concordant transitions Absent HITRAN transitions Characteristics of MARVEL energy levels: highly accurate highly incomplete as we move up on the energy ladder

Pure rotational energy levels for water T. Furtenbacher, A. G. Császár, J. Quant. Spectr. Rad. Transfer 109, 1234 (2008) J Ka KcJ Ka Kc H 2 16 OH 2 17 OH 2 18 O CVRQDFIS3MARVELCVRQDFIS3MARVELCVRQDFIS3MARVEL ,795 23, ,774 23, ,756 23, ,13837,13937, ,93236,93336, ,74936,75036, ,37242,37342, ,188 42, ,024 42, ,094 70, ,07770,00870, ,930 69, ,49979,50079, ,23079,23179, ,99178,99278, ,17895,17995, ,97394,97494, ,791 94, ,903134,906134, ,14 134, ,478133,480133, ,165136,168136, ,43 135, ,785134,788134, ,767136,768136, ,54 136, , , ,284142,285142, ,90 141, ,573141,574141, ,371173,372173, , ,116173, ,888172,889172, ,306206,309206, , , , ,760204,763204, ,161212,163212, , ,443211, ,804210,806210, ,222285,227285, , , , ,099282,103282, ,422285,426285, , , , ,311282,316282,

Energies/frequencies Have well developed protocol H 2 17 O, H 2 18 O and HD 16 O (nearly) complete H 2 16 O underway: all available data input, much missing Labeling remains an issue

Required to better than 1% for remote sensing Very few laboratory determinations this accurate Problems with consistency between measurements Issues with dynamic range of any measurements New ab initio CVR dipole accurate to about 3% (hope to do better soon ) Intensities:

Lodi & Tennyson, JQSRT, 109, 1219 (2008). Intensities of pure rotational transitions Calculations using CVR dipole surface of Lodi et al JCP, 128, (2008)

Lodi & Tennyson, JQSRT, 109, 1219 (2008).

CVR calc = Lodi & Tennyson, unpublished. DLR = Coudert, Wagner et al (JMS in press) Bending fundamental: 1250 – 1750 cm -1

Analysis of allowed and forbidden rotational transitions using: (Lodi & Tennyson, JQSRT, 109, 1219 (2008). ). 555 allowed, 846 forbidden lines > 10(-28) molecule/cm at 296 K 50 of which not in HITRAN or JPL Good general agreement with HITRAN for these Significant systematic errors identified in JPL database Subsequent analysis of bending fundamental region suggests problem with strong lines in HITRAN Use purely ab initio calculated intensities to solve these problems? (Resonances?!) Intensities: “UCL linelists” Multiple sources for single region Back filled for missing transitions with theory Will be IUPAC convention, HITRAN too?

A Database of Water Transitions from Experiment and Theory Members: Jonathan Tennyson (chair), P.F. Bernath, A. Campargue, M.R. Carleer, A.G. Császár, R.R. Gamache, J. Hodges, A. Jenouvrier, O. Naumenko, O.L. Polyansky, L.S. Rothman, R.A. Toth, A.C. Vandaele, N.F. Zobov, L. Brown Also: L Daumont, AZ Fazliev, T Furtenbacher, IF Gourdon, SN Mikhailenko, SV Shirin, BA Voronin, S Voronina, A Al Derzi UCL intensity work: L Lodi, M Barber, RN Tolchenov