核磁共振光譜與影像導論 Introduction to NMR Spectroscopy and Imaging Lecture 09 Applications of Solid State NMR (Spring Term, 2011) Department of Chemistry National Sun Yat-sen University
Applications of Solid State NMR Polymers Glasses Porous materials Liquid crystals
Schematic of a typical semicrystalline linear polymer
Stereochemical issue in substituted polymers
Signature of stereoregularity in the solid state spectrum
Static 2D exchange spectrum for polyethyleneoxide (PEO) Experiment Simulation
3D static 13C exchange spectra of polyethyleneoxide polyvinylacetate
Applications Polymers Glasses Porous materials Liquid crystals
Static whole-echo 207Pb NMR spectra in Pb-silicate glasses mol % PbO 66 50.5 31 Linewidth ~400 kHz @ 9.4 T —> signals of 6 experiments summed up 4000 0 -4000 ppm
Sodium silicate glasses Static 17O NMR spectra bridging (BO) and non-bridging (NBO) oxygens Na2Si2O5 Na2Si3O7 Na2Si4O9 NBO BO 600 0 -600 ppm
Structure of glasses (I) NBO BO
29Si NMR spectra for sodium silicate glasses static MAS Q4 mole % Na2O 34 37 41 Q3 Q2 Q3 + Q2 0 -100 -200 ppm -60 -80 -100
Structure of glasses (II) Q4 Q2 Q3 Q1
1H-29Si CPMAS intensity as a function of contact time Q2 Q3 Q4 Different sites in a Na2Si4O9 glass with 9.1 wt% H2O 0 20 40 contact time (ms)
Efficiency for (1H 29Si)-CP Acquisition 29Si CP decoupling 1H t
29Si MAS NMR spectra for a CaSi2O5 glass SiO4 SiO5 SiO6 x 8 glass crystal quenched from a 10 GPa pressure melt isotopically enriched high pressure phase normal isotopes -50 -100 -150 -200 ppm
11B MAS NMR spectra for a sodium borate glass (with 5 mole% Na2O) data fit slow cooled fast cooled R BO4 NR 30 15 0 ppm data fit R BO4 NR
31P MAS NMR spectra for sodium phosphate glasses mol % Na2O 56 53 40 30 15 5 Q1 Q2 Q3 100 0 -100 ppm
31P double-quantum NMR spectrum -60 2-2 Double-quantum dimension (ppm) 1-2 2-1 1-1 0 -30 Single-quantum dimension
1H MAS NMR spectrum for a GeO2-doped silica glass loaded with H2 and UV-irradiated after subtraction of intense back- ground signal SiOH + GeOH GeH 9.4 T, 10 kHz spinning 12 6 0 -6 ppm Sample contains ~8 ´1019 H atoms/cm3 (corresponding to about 500 ppm of H2O)
17O 3QMAS NMR spectrum for a glass on the NaAlO2-SiO2 join with Si/Al = 0.7 -50 50 100 MAS dimension (ppm) Al-O-Al Si-O-Al 0 -10 -20 -30 -40 -50 Isotropic dimension (ppm)
17O 3QMAS NMR spectrum for a borosilicate -100 -50 50 100 B-O-B MAS dimension (ppm) Si-O-Si Si-O-B -25 -50 -75 -100 Isotropic dimension (ppm)
11B-{27Al} CP-HETCOR NMR spectrum BO4 BO3 -80 80 AlO6 AlO5 AlO4 40 20 0 -20 ppm
Applications Polymers Glasses Porous materials Liquid crystals
Porous materials Zeolite A Sodalite
Porous materials Faujasite Cancrinite
Porous materials Zeolite ZK-5 Zeolite Rho
Zeolite framework projections AlPO4-5 along [001] AlPO4-11 along [100] VPI-5 along [001]
2 High-resolution 29Si MAS NMR spectra of synthetic Na-X and Na-Y zeolites (Si/Al) = 1.03 1.19 1.35 1.59 1.67 1.87 3 2.00 2.35 2.56 2.61 2.75 1 4 4 Si(nAl) lines n = 3 2 1 -80 -90 -100 -110 -80 -90 -100 -110
Possible ordering schemes for zeolite Y Si/Al = 1.67 Intensity ratios: Si(4Al):Si(3Al):Si(2Al):Si(1Al):Si(0Al) Si Al
29Si MAS NMR spectrum of highly siliceous mordenite 3 2 29Si MAS NMR spectrum of highly siliceous mordenite 1 Intensities -110 -112 -114 -116 -118 ppm
Mordenite structure along [001] T-site No. per unit cell Neighbouring sites Mean T-O-T bond angle T1 16 T1, T1, T2, T3 150.4° T2 16 T1, T2, T2, T4 158.1° T3 8 T1, T1, T3, T4 153.9° T4 8 T2, T2, T3, T4 152.3°
Mordenite structure along [001] T1/T3/T2+T4 : 3 cross peaks T1/T4/T2+T3 : 2 cross peaks T2/T3/T1+T4 : 2 cross peaks T2/T4/T1+T3 : 3 cross peaks T-site No. per unit cell Neighbouring sites Mean T-O-T bond angle T1 16 T1, T1, T2, T3 150.4° T2 16 T1, T2, T2, T4 158.1° T3 8 T1, T1, T3, T4 153.9° T4 8 T2, T2, T3, T4 152.3°
29Si MAS NMR spectrum of highly siliceous mordenite T2 + T4 T1 29Si MAS NMR spectrum of highly siliceous mordenite T3 J-scaled COSY spectrum T1/T3/T2+T4 : 3 cross peaks T1/T4/T2+T3 : 2 cross peaks T2/T3/T1+T4 : 2 cross peaks T2/T4/T1+T3 : 3 cross peaks -110 -112 -114 -116 -118 ppm
29Si MAS NMR spectra of ultrastabilized and hydrothermally realuminated zeolites 1 Si/Al = 2.56 3 4.96 4.26 7.98 2.44 2.70 2.09 -80 -90 -100 -110 -120 -90 -100 -110 -120 -90 -100 -110 ppm
Chemical reactions in zeolites {C} + H2O CO + H2 (water gas reaction)
Chemical reactions in zeolites {C} + H2O CO + H2 (water gas reaction) ……. + x O2 (n-x) CO + n H2 + x CO2 (water gas shift)
Chemical reactions in zeolites {C} + H2O CO + H2 (water gas reaction) ……. + x O2 (n-x) CO + n H2 + x CO2 (water gas shift) CO + 2 H2 CH3OH (conversion of synthesis gas) catalyst
Chemical reactions in zeolites {C} + H2O CO + H2 (water gas reaction) ……. + x O2 (n-x) CO + n H2 + x CO2 (water gas shift) CO + 2 H2 CH3OH (conversion of synthesis gas) CH3OH CH3OH + CH3OCH3 catalyst Zeolites 150 °C
Chemical reactions in zeolites {C} + H2O CO + H2 (water gas reaction) ……. + x O2 (n-x) CO + n H2 + x CO2 (water gas shift) CO + 2 H2 CH3OH (conversion of synthesis gas) CH3OH CH3OH + CH3OCH3 …….. complex mixture of hydrocarbons catalyst Zeolites 150 °C Zeolites 300 °C
Chemical reactions in zeolites {C} + H2O CO + H2 (water gas reaction) ……. + x O2 (n-x) CO + n H2 + x CO2 (water gas shift) CO + 2 H2 CH3OH (conversion of synthesis gas) CH3OH CH3OH + CH3OCH3 …….. complex mixture of hydrocarbons catalyst Zeolites 150 °C Zeolites 300 °C
13C MAS NMR spectrum of H-ZSM-5 with 50 torr of adsorbed MeOH heated to 300 °C for 35 mins 0 -5 -10 -15 40 30 20 10 0 -10 ppm
13C MAS NMR spectrum of H-ZSM-5 with 50 torr of adsorbed MeOH heated to 300 °C for 35 mins scalar coupling 0 -5 -10 -15 1JCH = 125 Hz a quintet with ratio 1:4:6:4:1 is expected for methane 40 30 20 10 0 -10 ppm
Heteronuclear 2D J-resolved 13C MAS NMR spectrum 300 200 100 0 Hz -100 -200 -300 26 24 22 18 17 16 15 -11 -12 ppm
13C NMR spin diffusion spectrum of products of methanol conversion over zeolite ZSM-5 25 20 15 10 ppm
13C MAS NMR spectrum of H-ZSM-5 with 50 torr of adsorbed MeOH heated to 300 °C for 35 mins Methane Ethane Propane Cyclopropane n-Butane Isobutane (n-Pentane) Isopentane n-Hexane n-Heptane 0 -5 -10 -15 40 30 20 10 0 -10 ppm
Methylated aromatic products * CO * * * * 190 185 180 140 135 130 125 ppm
129Xe NMR as a sensitive tool for materials 0: reference S: surface collisions Xe: Xe-Xe collisions E: electric field effect M: paramagnetic species
129Xe as a sensitive probe for various zeolites ZK4 ZSM-5 1021 NaY ZSM-11 K - L Xe atoms /g omega 1020 60 80 100 120 140 ppm
Applications Polymers Glasses Porous materials Liquid crystals
Graphitic nanowires Hexa-peri-hexabenzocoronene (HBC)
HBC monolayer on HOPG
Phase transitions of alkyl substituted HBC
Temperature dependence of the one dimensional charge carrier mobility
Liquid crystalline (dichotic) behaviour of alkyl substituted HBC‘s R = C12H25 Hexadodecyl-hexa-peri-hexabenzocoronene (HBC-C12)
Charge carrier mobility in HHTT
1H DQ MAS NMR spectra of HBC-C12 a-deuterated fully protonated
Proposed stacking model based on solid state NMR
„Graphitic“ stacking
Spinning side band simulation in the DQ time domain For an isolated spin pair, using N cycles of the recoupling sequence for both the excitation and reconversion of DQCs, the DQ time domain signal is given by: b and g are Euler angles relating the PAF of the diploar coupling tensor to the rotor fixed reference frame with -> distance information in a rigid system, or indication of mobility: Ref.: Graf et al. J. Chem. Phys. 1997, 106, 885
Homonuclear correlation between I = 1/2 spins
aromatic protons at 8.3 ppm (crystalline phase) DQ spinning side band patterns wR = 35 kHz aromatic protons at 6.2 ppm (LC phase) wR = 10 kHz aliphatic protons at 1.2 ppm (crystalline phase) wR = 35 kHz fitted dipolar coupling constants
Effect of additional phenyl spacers R = -C12H25 or -C6H4-C12H25
Space filling model for HBC-PhC1
X-ray diffraction patterns of the mesophases