Millenium simulations at IPSL THOR: C. Frankignoul, G. Gastineau, C. Marini, J. Mignot Escarsel: M. Khodri, J. Servonnat, P. Yiou THOR CT1 meeting, Bergen,

Slides:



Advertisements
Similar presentations
North Pacific and North Atlantic multidecadal variability: Origin, Predictability, and Implications for Model Development Thanks to: J. Ba, N. Keenlyside,
Advertisements

Dynamical responses to volcanic forcings in climate model simulations DynVar workshop Matthew Toohey with Kirstin Krüger, Claudia Timmreck, Hauke.
The midlatitude influence of the AMOC onto the atmosphere Guillaume Gastineau 1, Blandine L’Hévéder 2, Francis Codron 2, Claude Frankignoul 1 1 LOCEAN/IPSL.
Bidecadal North Atlantic ocean circulation variability controlled by timing of volcanic eruptions Didier Swingedouw, Pablo Ortega, Juliette Mignot, Eric.
Seasonal to decadal prediction of the Arctic Oscillation D. Smith, A. Scaife, A. Arribas, E. Blockley, A. Brookshaw, R.T. Clark, N. Dunstone, R. Eade,
Understanding Sahel Rainfall Variability: Progress and Challenges Michela Biasutti in collaboration with Alessandra Giannini.
Annular Modes of Extra- tropical Circulation Judith Perlwitz CIRES-CDC, University of Colorado.
3. Natural Climate Variability. SPM 1b Variations of the Earth’s surface temperature for the past 1,000 years Approx. climate range over the 900 years.
Indian Monsoon, Indian Ocean dipoles and ENSO Pascal Terray LOCEAN/IPSL, France Fabrice Chauvin CNRM/Météo-France, France Sébastien Dominiak LOCEAN/IPSL,
1 Geophysical Fluid Dynamics Laboratory Review June 30 - July 2, 2009.
Initialisation, predictability and future of the AMOC Didier Swingedouw Juliette Mignot, Romain Escudier, Sonia Labetoulle, Eric Guilyardi Christian Rodehacke,
Mojib Latif, Helmholtz Centre for Ocean Research and Kiel University
Response of the Atmosphere to Climate Variability in the Tropical Atlantic By Alfredo Ruiz–Barradas 1, James A. Carton, and Sumant Nigam University of.
Review of Northern Winter 2010/11
Outline Further Reading: Detailed Notes Posted on Class Web Sites Natural Environments: The Atmosphere GG 101 – Spring 2005 Boston University Myneni L31:
Modes of Pacific Climate Variability: ENSO and the PDO Michael Alexander Earth System Research Lab michael.alexander/publications/
Protecting our Health from Climate Change: a Training Course for Public Health Professionals Chapter 2: Weather, Climate, Climate Variability, and Climate.
Influence of the sun variability and other natural and anthropogenic forcings on the climate with a global climate chemistry model Martin Schraner Polyproject.
Ocean feedbacks on the Afro-Asian monsoon during the Mid-Holocene Yan ZHAO, Pascale Braconnot, Olivier Marti and PMIP working group on coupled simulations.
Didier Swingedouw, Laurent Terray, Christophe Cassou, Aurore Voldoire, David Salas-Mélia, Jérôme Servonnat CERFACS, France ESCARSEL project Natural forcing.
Figure 1. Primary explanatory variables (basis functions) considered in the multiple regression statistical model. See the text for data sources.  Log.
Atlantic Multidecadal Variability and Its Climate Impacts in CMIP3 Models and Observations Mingfang Ting With Yochanan Kushnir, Richard Seager, Cuihua.
Lecture 8 The Holocene and Recent Climate Change.
Volcanic source of decadal predictability in the North Atlantic Didier Swingedouw, Juliette Mignot, Sonia Labetoulle, Eric Guilyardi, Gurvan Madec.
Past ENSO : observations and simulations with the IPSL model for the Holocene and the last Millennium P. Braconnot, Laboratoire des Sciences du climat.
Natural and Anthropogenic Drivers of Arctic Climate Change Gavin Schmidt NASA GISS and Columbia University Jim Hansen, Drew Shindell, David Rind, Ron Miller.
Volcanoes and decadal forecasts with EC-Earth Martin Ménégoz, Francisco Doblas-Reyes, Virginie Guemas, Asif Muhammad EC-Earth Meeting, Reading, May 2015.
Causes of Climate Change Over the Past 1000 Years Thomas J. Crowley Presentation by Jessica L. Cruz April 26, 2001.
Numerical modelling of possible catastrophic climate changes E.V. Volodin, N. A. Diansky, V.Ya. Galin, V.P. Dymnikov, V.N. Lykossov Institute of Numerical.
Water Year Outlook. Long Range Weather Forecast Use a combination of long term predictors –Phase of Pacific Decadal Oscillation (PDO) –Phase of Atlantic.
D. Swingedouw (EPOC), J.-C. Dutay (LSCE), P. Braconnot (LSCE), O. Marti (LSCE), L. Bopp (LSCE), C. Colin (IDES), J. Mignot (LOCEAN), M. Khodri (LOCEAN).
Bidecadal North Atlantic ocean circulation variability controlled by timing of volcanic eruptions Didier Swingedouw, Pablo Ortega, Juliette Mignot, Eric.
The effects of solar variability on the Earth’s climate Joanna D. Haigh 2010/03/09 Pei-Yu Chueh.
The early 20th century warming in the Arctic – A possible mechanism Lennart Bengtsson Max Planck Institute for Meteorology, Hamburg, Germany ESSC, University.
C20C Workshop ICTP Trieste 2004 The Influence of the Ocean on the North Atlantic Climate Variability in C20C simulations with CSRIO AGCM Hodson.
Temperature Anomaly (  C) Annual Solar Radiation (W m -2 )
Volcanic Climate Impacts and ENSO Interaction Georgiy Stenchikov Department of Environmental Sciences, Rutgers University, New Brunswick, NJ Thomas Delworth.
Recent variability of the solar spectral irradiance and its impact on climate modelling - TOSCA WG1 Workshop, May 2012, Berlin Stratospheric and tropospheric.
Didier Swingedouw, Laurent Terray, Christophe Cassou, Aurore Voldoire, David Salas-Mélia, Jérôme Servonnat CERFACS, France ESCARSEL project Natural forcing.
Alan Robock Department of Environmental Sciences Rutgers University, New Brunswick, New Jersey USA
Human fingerprints on our changing climate Neil Leary Changing Planet Study Group June 28 – July 1, 2011 Cooling the Liberal Arts Curriculum A NASA-GCCE.
Research Needs for Decadal to Centennial Climate Prediction: From observations to modelling Julia Slingo, Met Office, Exeter, UK & V. Ramaswamy. GFDL,
The dynamic-thermodynamic sea ice module in the Bergen Climate Model Helge Drange and Mats Bentsen Nansen Environmental and Remote Sensing Center Bjerknes.
Variability on time scales of decades up to a century in a AOGCM simulation with realistic time-variable forcing Hans von Storch, Eduardo Zorita, Irene.
Alan Robock Department of Environmental Sciences Rutgers University, New Brunswick, New Jersey USA
Mean 20 o C isotherm (unit: meter) The thermocline zone is sometimes characterized by the depth at which the temperature gradient is a maximum (the “thermocline.
Mixed Layer Ocean Model: Model Physics and Climate
Beyond CMIP5 Decadal Predictions and the role of aerosols in the warming slowdown Doug Smith, Martin Andrews, Ben Booth, Nick Dunstone, Rosie Eade, Leon.
Modes of variability and teleconnections: Part II Hai Lin Meteorological Research Division, Environment Canada Advanced School and Workshop on S2S ICTP,
Didier Swingedouw CERFACS, Toulouse, France Response of the AMOC to global warming: role of ice sheets melting and AMOC feedbacks.
Didier Swingedouw LSCE, France Large scale signature of the last millennium variability: challenges for climate models.
Helge Drange Geofysisk institutt Universitetet i Bergen Atlantic Multidecadal Variability and the role of natural forcing in BCM Odd Helge Otterå, Mats.
Climate Variability and Basin Scale Forcing over the North Atlantic Jim Hurrell Climate and Global Dynamics Division National Center for Atmospheric Research.
Current state of ECHAM5/NEMO coupled model Wonsun Park, Noel Keenlyside, Mojib Latif (IFM-GEOMAR) René Redler (NEC C&C Research Laboratories) DRAKKAR meeting.
OUTLINE Examples of AMOC variability and its potential predictability, Why we care, Characteristics of AMOC variability in a CCSM3 present-day control.
Initialisation of the Atlantic overturning IPSLCM5A-LR simulations nudged or free (with observed external forcings) Two reconstructions of the Atlantic.
Climate Change and Global Warming Michael E. Mann Department of Environmental Sciences University of Virginia Waxter Environmental Forum Sweet Briar College.
MICHAEL A. ALEXANDER, ILEANA BLADE, MATTHEW NEWMAN, JOHN R. LANZANTE AND NGAR-CHEUNG LAU, JAMES D. SCOTT Mike Groenke (Atmospheric Sciences Major)
Boulder, June, 2006 Extremes in Ensemble Simulations of the Maunder Minimum: Midlatitude Cyclones, Precipitation, and Wind speed Christoph Raible (1) M.
Influence of volcanic eruptions on the bi-decadal variability in the North Atlantic Didier Swingedouw, Juliette Mignot, Eric Guilyardi, Pablo Ortega, Myriam.
Our water planet and our water hemisphere
Odd Helge Otterå1,3, Jerry Tjiputra1,3 and Tao Wang2
Samuel SOMOT1 and Michel CREPON2
Challenges of Seasonal Forecasting: El Niño, La Niña, and La Nada
Towards a new reanalysis with the IPSL climate model
Dynamics of ENSO Complexity and Sensitivity
Climate Change.
Volcanic Climate Impacts and ENSO Interaction
Extratropical Climate and Variability in CCSM3
Ocean/atmosphere variability related to the development of tropical Pacific sea-surface temperature anomalies in the CCSM2.0 and CCSM3.0 Bruce T. Anderson,
Presentation transcript:

Millenium simulations at IPSL THOR: C. Frankignoul, G. Gastineau, C. Marini, J. Mignot Escarsel: M. Khodri, J. Servonnat, P. Yiou THOR CT1 meeting, Bergen, Oct

The IPSL-CM4 coupled model LMDZ: atmospheric physics and dynamics horizontal resolution 96x72, 19 vertical layers OPA: ocean dynamics based on a 2 degrees Mercator mesh (orca), 31 vertical levels LIM: sea-ice dynamics and thermodynamics ORCHIDEE: land surface OASIS Marti et al

The IPSL-CM4 coupled model Simulations: - CTRL1000 years control simulation, preindustrial GHGs and tropospheric aerosols concentrations - SOL 950 years ( ) years simulation including solar forcing, historical GHGs (Joos et al. 2008) and preindustrial tropospheric aerosols concentrations - SOLVOL 300 years (starting yr 850) simulation including solar +volcanic forcing

TSI Crowley (2000), W/m -2 (a) The solar forcing Calendar time SOL SOLVOLKrivova, pers. com Amman et al. 2007: -0.25% TSI at the Maunder minimum More recent estimates: -0.1 % at the Maunder minimum

SOL – northern hemisphere temperatures Reconstructions overlap Osborn and Briffa, IPCC AR4, Solomon et al Good global agreement, Cold « bias » (Missing volcanoes, which would have decreased the warming between ) Correlation with TSI: 0.74 Servonnat et al., in prep.

Northern Hemisphere surface temperature anomalies (°C ref ) Preind. CTRL Mann et al 2008 EIV Moberg et al 2005 Crowley & Lowery 2000 Ammann & Wahl 2007 (a) (e) (d) (c) (b) SOL – northern hemisphere temperatures Comparison with four individual reconstructions Servonnat et al., in prep.

SOL – regression of temperature on TSI annual mean Max sensitivity with 15 yrs lag: 0.109°C/W.m -2 sensitivity over sea ice > over land > over ocean Servonnat et al., in prep. Lag 15 yrs

CTRL/SOL surface temperature variability CTRL SOL 80°N 40°N Eq 40°S 80°S 100°W 100°E0° 100°W 100°E0° 100°W 100°E0° 100°W 100°E0° 100°W 100°E0° 100°W 100°E0° 80°N 40°N Eq 40°S 80°S Cold period ( AD) Warm Period ( AD) - 1 SD + 1 SD Annual mean Summer Winter (a) (b) (c) (d) (e) (f) (k) (l) (i) (j)(h) 80°N 40°N Eq 40°S 80°S 80°N 40°N Eq 40°S 80°S Servonnat et al., in prep.

CTRL/SOL surface temperature variability CTRL SOL 80°N 40°N Eq 40°S 80°S 100°W 100°E0° 100°W 100°E0° 100°W 100°E0° 100°W 100°E0° 100°W 100°E0° 100°W 100°E0° 80°N 40°N Eq 40°S 80°S Cold period ( AD) Warm Period ( AD) - 1 SD + 1 SD Annual mean Summer Winter (a) (b) (c) (d) (e) (f) (k) (l) (i) (j)(h) 80°N 40°N Eq 40°S 80°S 80°N 40°N Eq 40°S 80°S Servonnat et al., in prep. Global Land Ocean = 75% = 78% = 73% Global Land Ocean = 71% = 73% = 71% Global Land Ocean = 76% = 83% = 73% Global Land Ocean = 73% = 80% = 70% Global Land Ocean = 67% = 57% = 72% Global Land Ocean = 70% CP WP Annual mean SummerWinter -1SD/+1SD SOL

SOLVOL – sensitivity of the atmospheric model to volcanic forcing b) Observations (Robock, 2000) Anomalous response of LMDZ to Mt Pinatubo eruption (DJF ) Temperature in the low troposphere 500mb geopotential a) LMDZ Khodri, pers. com.

SOLVOL – volcanic forcing in the IPSL model Sulfate aerosol in the stratosphere Volcanic eruption with a VEI>4 Essentially tropical eruptions Optic thickness of the volcanic aerosols for the Mt Pinatubo eruptions ( ) months latitude altitude DJF Mie code to compute the simple diffusion albedo and asymetry factor for the sulfate stratospheric aerosol in water phase Implementation of the optic thickness on the 2 layers above the tropopause Khodri, pers. com.

Atlantic thermohaline circulation CTRL SOL SOLVOL

Atlantic thermohaline circulation MSF average CTRL SOL SOLVOL

North Atlantic deep convection Maximum mixed layer depth in March CTRL

Barotropic streamfunction CTRL

Horizontal circulation in the North Atlantic CTRL

Horizontal circulation in the North Atlantic in winter CTRL

Horizontal circulation in the northern North Atlantic CTRL

Horizontal circulation in the northern North Atlantic in winter CTRL

Plans Use of IPSL_CM5 model: ORCA2 x LMDZ (96x95x39) run should start before end 2009 Only SOLVOL experiment? forcings? - THC variability on decadal to centennial timescale – process studies -Ocean-atmosphere feedback - internal vs externally forced variability

Implémentation de l’impact radiatif des aérosols volcanique dans MDZ  Code de Mie: Calcul de l’albédo de simple diffusion (cg) et le facteur d’asymétrie (piz) pour les aérosols stratosphériques sulfatés en phase aqueuse (forme binaire H2SOA/H2O: 75%/25%) El Chichon + Pinatubo (SO4 droplet): # R : rayon modal en nm : # Sigma : largeur de distribution: 1.30 # w1 w2 : albedo de simple diffusion sur les 2 bandes du visible : # g1 g2 : paramËtre d'assymÈtrie sur les 2 bandes du visible :  Implémentation de l’épaisseur optique (Tau) sur les 2 couches atmosphériques au dessus de la tropopause Epaisseur optique des aérosols volcanique Pour l’éruption du Mt Pinatubo ( ) mois latitude altitude DJF Khodri, pers. com.

Volcanic Explosive Index, VEI (Newhall y Self, 1982) VEI HAUTEUR DU PANACHE VOLUME D’ÉJECTION CLASSIFICATION EXEMPLE 0 <100 m 1000s m 3 Hawaiano Kilauea m 10000s m 3 Hawaiano/Estrombolia no Stromboli km s m 3 Estromboliano/Vulcani ano Galeras (1992) km m 3 VulcanianoRuiz (1985) km s m 3 Vulcaniano/Plineano Galunggung (1982) 5 >25 km 1 km 3 PlineanoSt. Helens (1980) 6 >25 km 10s km 3 Plineano/Ultra-Plineano Krakatau (1883) 7 >25 km 100s km 3 Ultra-Plineano Tambora (1815) 8 >25 km 1000s km 3 Ultra-Plineano Toba (74 ka) Volcanic eruptions with stratospheric impact : VEI > 4 Khodri, pers. com.

Mixed layer depth in the North Atlantic Monthly mean maximum Standard deviation of the March monthly values De Boyer Montégut et al. 2005

Annual mean Atlantic meridional overturning circulation Time series of the AMOC maximum

Temporal characteristics of the maximum of the annual mean AMOC

Leading mode of SLP variability over the North Atlantic

2nd EOF of SLP over the North Atlantic

Atlantic annual mean SST and SSS Reynolds Reverdin

ENSO in IPSL-CM4 First EOF of tropical Pacific SST Regression of the SLP on the corresponding principal component 64%

ENSO Model Observations (Reynolds and NCEP) 65,5 % 64 %