Welcome to Econ 420 Applied Regression Analysis Study Guide Week Ten.

Slides:



Advertisements
Similar presentations
Multiple Regression.
Advertisements

Welcome to Econ 420 Applied Regression Analysis Study Guide Week Nine.
Managerial Economics in a Global Economy
Multiple Regression W&W, Chapter 13, 15(3-4). Introduction Multiple regression is an extension of bivariate regression to take into account more than.
Welcome to Econ 420 Applied Regression Analysis
The Multiple Regression Model.
Welcome to Econ 420 Applied Regression Analysis Study Guide Week Fourteen.
Irwin/McGraw-Hill © Andrew F. Siegel, 1997 and l Chapter 12 l Multiple Regression: Predicting One Factor from Several Others.
Chapter 14, part D Statistical Significance. IV. Model Assumptions The error term is a normally distributed random variable and The variance of  is constant.
Qualitative Variables and
4.3 Confidence Intervals -Using our CLM assumptions, we can construct CONFIDENCE INTERVALS or CONFIDENCE INTERVAL ESTIMATES of the form: -Given a significance.
Welcome to Econ 420 Applied Regression Analysis Study Guide Week Three Ending Tuesday, September 11 (Note: You must go over these slides and complete every.
Chapter 13 Multiple Regression
Lecture 3 Cameron Kaplan
Marietta College Week 14 1 Tuesday, April 12 2 Exam 3: Monday, April 25, 12- 2:30PM Bring your laptops to class on Thursday too.
Chapter 10 Simple Regression.
Chapter 12 Multiple Regression
Econ 140 Lecture 131 Multiple Regression Models Lecture 13.
1 An example. 2 AirlinePercentage on time Complaints Southwest Continental Northwest US Airways United American
Multiple Regression Models
Multiple Regression Applications
Chapter 11 Multiple Regression.
Statistics for Managers Using Microsoft Excel, 4e © 2004 Prentice-Hall, Inc. Chap 13-1 Chapter 13 Introduction to Multiple Regression Statistics for Managers.
Multiple Linear Regression Analysis
Lecture 5 Correlation and Regression
Hypothesis Tests and Confidence Intervals in Multiple Regressors
Chapter 13: Inference in Regression
5.1 Basic Estimation Techniques  The relationships we theoretically develop in the text can be estimated statistically using regression analysis,  Regression.
Multiple Regression. In the previous section, we examined simple regression, which has just one independent variable on the right side of the equation.
4.2 One Sided Tests -Before we construct a rule for rejecting H 0, we need to pick an ALTERNATE HYPOTHESIS -an example of a ONE SIDED ALTERNATIVE would.
1 Tests with two+ groups We have examined tests of means for a single group, and for a difference if we have a matched sample (as in husbands and wives)
Copyright © 2013, 2010 and 2007 Pearson Education, Inc. Chapter Inference on the Least-Squares Regression Model and Multiple Regression 14.
Chapter 14 Introduction to Multiple Regression
Welcome to Econ 420 Applied Regression Analysis Study Guide Week Two Ending Sunday, September 9 (Note: You must go over these slides and complete every.
Welcome to Econ 420 Applied Regression Analysis Study Guide Week Twelve.
Welcome to Econ 420 Applied Regression Analysis Study Guide Week Five Ending Wednesday, September 26 (Note: Exam 1 is on September 27)
Welcome to Econ 420 Applied Regression Analysis Study Guide Week Six.
Lecture 8 Simple Linear Regression (cont.). Section Objectives: Statistical model for linear regression Data for simple linear regression Estimation.
Y X 0 X and Y are not perfectly correlated. However, there is on average a positive relationship between Y and X X1X1 X2X2.
Lesson Multiple Regression Models. Objectives Obtain the correlation matrix Use technology to find a multiple regression equation Interpret the.
Welcome to Econ 420 Applied Regression Analysis Study Guide Week Thirteen.
Statistics for Business and Economics 8 th Edition Chapter 11 Simple Regression Copyright © 2013 Pearson Education, Inc. Publishing as Prentice Hall Ch.
Welcome to Econ 420 Applied Regression Analysis Study Guide Week Four Ending Wednesday, September 19 (Assignment 4 which is included in this study guide.
Welcome to Econ 420 Applied Regression Analysis Study Guide Week Seven.
Welcome to Econ 420 Applied Regression Analysis Study Guide Week Eight.
Multiple Regression. Simple Regression in detail Y i = β o + β 1 x i + ε i Where Y => Dependent variable X => Independent variable β o => Model parameter.
Environmental Modeling Basic Testing Methods - Statistics III.
Copyright ©2011 Pearson Education, Inc. publishing as Prentice Hall 14-1 Chapter 14 Introduction to Multiple Regression Statistics for Managers using Microsoft.
Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice- Hall, Inc. Chap 14-1 Business Statistics: A Decision-Making Approach 6 th Edition.
11 Chapter 5 The Research Process – Hypothesis Development – (Stage 4 in Research Process) © 2009 John Wiley & Sons Ltd.
Basic Business Statistics, 10e © 2006 Prentice-Hall, Inc.. Chap 14-1 Chapter 14 Introduction to Multiple Regression Basic Business Statistics 10 th Edition.
Example x y We wish to check for a non zero correlation.
Introduction to Multiple Regression Lecture 11. The Multiple Regression Model Idea: Examine the linear relationship between 1 dependent (Y) & 2 or more.
1 1 Slide The Simple Linear Regression Model n Simple Linear Regression Model y =  0 +  1 x +  n Simple Linear Regression Equation E( y ) =  0 + 
Statistics for Managers Using Microsoft Excel, 5e © 2008 Prentice-Hall, Inc.Chap 14-1 Statistics for Managers Using Microsoft® Excel 5th Edition Chapter.
Introduction to Statistics for the Social Sciences SBS200, COMM200, GEOG200, PA200, POL200, or SOC200 Lecture Section 001, Fall 2015 Room 150 Harvill.
Lecture 8: Ordinary Least Squares Estimation BUEC 333 Summer 2009 Simon Woodcock.
More Multiple Regression
Chapter 14 Introduction to Multiple Regression
The Multiple Regression Model
Basic Estimation Techniques
Further Inference in the Multiple Regression Model
Multiple Regression Analysis and Model Building
Basic Estimation Techniques
More Multiple Regression
More Multiple Regression
Goodness of Fit The sum of squared deviations from the mean of a variable can be decomposed as follows: TSS = ESS + RSS This decomposition can be used.
Chapter 7: The Normality Assumption and Inference with OLS
Seminar in Economics Econ. 470
Presentation transcript:

Welcome to Econ 420 Applied Regression Analysis Study Guide Week Ten

Ok People We have an Exam on Thursday, November 1. My original plan was to cover Chapter 6 before this exam. But I changed my mind. (Hope you don’t mind.) So the Exam will cover only 2 chapters (4 & 5). We will cover Chapters 6, 7 and 8 after exam. I expect all of you to do extremely well on this exam. I am here to help. Use the Discussion Board to ask me questions.

Assignment 8 Key (40 points)

1. Use the data set dvd4 and EViews to test the hypothesis that at high levels of income people are less sensitive to the price of dvd than at low levels of income. Use 5 percent level of significance Need to add an interaction variable to our equation: DVDEXP = B^ 0 + B^ 1 INCOME + B^ 2 PRICE + B^ 3 RAINFALL + B^ 4 (inctimesprice) –The interaction variable is inctimesprice which is INCOME * PRICE Partial derivative (slope) of DVDEXP with respect to price is d(DVDEXP)/d (Price) = B^ 2 + B^ 4 Income You expect B^ 2 to be negative If the hypothesis is true then you also expect B^ 4 to be positive (and smaller than B^ 2 ) If B^ 4 turns out to be significantly bigger than zero, then you have found evidence that at as income goes up the slope of DVDEXP with respect to PRICE goes down (becomes less of a negative)

Step 1: Null hypothesis: H0: B4 ≤ 0 Alt. hypothesis: HA: B4 > 0 Step 2: We will use 5% as our level of significance. Degrees of freedom = n – k – 1 = 30 – 4 – 1 = 25; tc = (from pg. 312). Decision rule: reject null hypothesis if t > tc, that is if t > Step 3: Run the regression: –The estimated coefficient on INCOMEXPRICE = and the t-stat =1.19 Step 4: Because our t-statistic, 1.19 is not greater than 1.708, the null hypothesis B4 ≤ 0 cannot be rejected at a 5% significance level; we cannot say that at high levels of income people are less sensitive to the price of a dvd than those at low levels of income.

2: #13, page 113 a.H0: B1=B2, HA: B1 is not equal to B2 b.You will need to design your own F-test. The unrestricted model is: CONSUMPTION = B0 + B1 INCOME + B2 WEALTH+ e The restricted model is found by forcing the null hypothesis to be true. If B1=B2 then CONSUMPTION = B0 + B1 INCOME + B1 WEALTH+ e This is the same as: CONSUMPTION = B0 + B1 (INCOME + WEALTH) + e –where (INCOME + WEALTH) is the only independent variable in the regression. –Under EViews you will need to generate a new variable call it “incwealth” –Incwealth = INCOME + WEALTH c.After estimating the restricted and unrestricted models, you should get a residual sum of squares for the restricted model of 5.28 x 10 9 or 5,280,000,000. The residual sum of squares for the unrestricted model is 4.33 x 10 9 or 4,330,000,000. q, the number of restrictions, is 1. B1 can take any value, and then B2 must take the same value as B1 for the null hypothesis to be true, so B2 has a restricted value if the null hypothesis is true. The null hypothesis used here only imposes one restriction.

The critical value for F1,27 with a 1% error level is Since the calculated value of the F-statistic is lower than the critical value, we cannot reject the null hypothesis that B1=B2. (Note that the critical value for a 5% error level is 4.21, so the null hypothesis could be rejected with a 5% error level). 5.92

3: #10, Page 113 Regression Results for Professional Wrestling Model with an Interaction Variable Dependent Variable is HOURS VariableCoefficientStandard Errort-Statistic Constant MALE INCOME AGE AGExINCOME Observations: 20 R2 = 0.47 Adjusted R2 = 0.32 Residual Sum of Squares = F-statistic = 3.26 The slope estimate for AGExINCOME is statistically insignificant at any acceptable level of significance (up to 10%). Meaning that the effect of income on hours of watching does not significantly depend on a person’s age. Notes 1.The presence of AGExINCOME causes the INCOME coefficient to become insignificant. (See Table 5B, there is no interaction variable and the INCOME slope estimate is significant). 2.The adjusted R2 of this estimation (0.32) is lower than the one in Table 5B (0.35), meaning that the interaction variable does not belong in the equation. In other words, It is an irrelevant variable.

4: #12, Page 113 Need to use an F-test Unrestricted model is SALES^ = B^0 + B^1UNEMPLOY + B^2SUMMER + B^3FALL + B^4WINTER Restricted model is SALES^ = B^0 + B^1UNEMPLOY The hypotheses are –H0: B2 = B3 = B4 = 0 –HA: At least one of these B’s is not zero RSS restricted = 1,260,000,000 RSS unrestircted = 262,000,000 N-k-1 =17 and q=3

The critical value of F3,17 at a 1% error level is 5.19, so the null hypothesis is rejected.