ASIPP HT-7 belt limiter Houyang Guo, Sizhen Zhu and Jiangang Li Investigation of EAST Divertor Asymmetry in Plasma Detachment & Target Power Loading Using.

Slides:



Advertisements
Similar presentations
Introduction to Plasma-Surface Interactions Lecture 6 Divertors.
Advertisements

ASIPP Characteristics of edge localized modes in the superconducting tokamak EAST M. Jiang Institute of Plasma Physics Chinese Academy of Sciences The.
6th Japan Korea workshop July 2011, NIFS, Toki-city Japan Edge impurity transport study in stochastic layer of LHD and scrape-off layer of HL-2A.
Conference on Computational Physics 30 August 2006 Transport Simulation for the Scrape-Off Layer and Divertor Plasmas in KSTAR Tokamak S. S. Kim and S.
Spectroscopy of hydrocarbon in low temperature plasmas : Results from JT-60U T. Nakano J apan A tomic E nergy A gency, Ibaraki, Japan. 6-9/11/2006 ITPA.
Exploring Capability to Calculate Heat Loads on Divertors and Walls T.K. Mau UC-San Diego ARIES Pathways Project Meeting September 6-7, 2007 Idaho Falls,
Physics of fusion power
Progress on Determining Heat Loads on Divertors and First Walls T.K. Mau UC-San Diego ARIES Pathways Project Meeting December 12-13, 2007 Atlanta, Georgia.
Physics of fusion power Lecture 8 : The tokamak continued.
The Exploration and Space Technology (EaST) Lab Dr. Andrew Ketsdever Department of Mechanical and Aerospace Engineering Charge Exchange Containment Cell.
H. D. Pacher 1, A. S. Kukushkin 2, G. W. Pacher 3, V. Kotov 4, G. Janeschitz 5, D. Reiter 4, D. Coster 6 1 INRS-EMT, Varennes, Canada; 2 ITER Organization,
Introduction to Plasma- Surface Interactions G M McCracken Hefei, October 2007.
Nils P. Basse Plasma Science and Fusion Center Massachusetts Institute of Technology Cambridge, MA USA ABB seminar November 7th, 2005 Measurements.
pkm- NCSX CDR, 5/21-23/ Power and Particle Handling in NCSX Peter Mioduszewski 1 for the NCSX Boundary Group: for the NCSX Boundary Group: M. Fenstermacher.
ASIPP EAST Overview Of The EAST In Vessel Components Upgraded Presented by Damao Yao.
Divertor/SOL contribution IEA/ITPA meeting Naka Nov. 23, 2003 Status and proposals of IEA-LT/ITPA collaboration Multi-machine Experiments Presented by.
Simulation Study on behaviors of a detachment front in a divertor plasma: roles of the cross-field transport Makoto Nakamura Prof. Y. Ogawa, S. Togo, M.
HT-7 ASIPP Density Modulation Experiment within Lithium coating on HT-7 Tokamak Wei Liao,Yinxian Jie, Xiang Gao and the HT-7 team Institute of Plasma Physics,
ASIPP Development of a new liquid lithium limiter with a re-filling system in HT-7 G. Z. Zuo, J. S. Hu, Z.S, J. G. Li,HT-7 team July 19-20, 2011 Institute.
PIC simulations of the propagation of type-1 ELM-produced energetic particles on the SOL of JET D. Tskhakaya 1, *, A. Loarte 2, S. Kuhn 1, and W. Fundamenski.
1 Modeling of EAST Divertor S. Zhu Institute of Plasma Physics, Chinese Academy of Sciences.
The study of MARFE during long pulse discharges in the HT-7 tokamak W.Gao, X.Gao, M.Asif, Z.W.Wu, B.L.Ling, and J.G.Li Institute of Plasma Physics, Chinese.
1 Development of integrated SOL/Divertor code and simulation study in JT-60U/JT-60SA tokamaks H. Kawashima, K. Shimizu, T. Takizuka Japan Atomic Energy.
V. A. Soukhanovskii NSTX Team XP Review 31 January 2006 Princeton, NJ Supported by Office of Science Divertor heat flux reduction and detachment in lower.
Physics of fusion power Lecture 10: tokamak – continued.
V. A. Soukhanovskii 1 Acknowledgement s: R. Maingi 2, D. A. Gates 3, J. Menard 3, R. Raman 4, R. E. Bell 3, C. E. Bush 2, R. Kaita 3, H. W. Kugel 3, B.
NSTX-U NSTX-U PAC-31 Response to Questions – Day 1 Summary of Answers Q: Maximum pulse length at 1MA, 0.75T, 1 st year parameters? –A1: Full 5 seconds.
Divertor Design Considerations for CFETR
J.N. Brooks, A. Hassanein, T. Sizyuk, J.P. Allain
Introduction to Plasma- Surface Interactions Lecture 3 Atomic and Molecular Processes.
Transport of deuterium - tritium neutrals in ITER divertor M. Z. Tokar and V.Kotov Plasma and neutral gas in ITER divertor will be mixed of deuterium and.
14 Oct. 2009, S. Masuzaki 1/18 Edge Heat Transport in the Helical Divertor Configuration in LHD S. Masuzaki, M. Kobayashi, T. Murase, T. Morisaki, N. Ohyabu,
1 Max-Planck-Institut für Plasmaphysik 10th ITPA meeting on SOL/Divertor Physics, 8/1/08, Avila ELM resolved measurements of W sputtering MPI für Plasmaphysik.
EAST Data processing of divertor probes on EAST Jun Wang, Jiafeng Chang, Guosheng Xu, Wei Zhang, Tingfeng Ming, Siye Ding Institute of Plasma Physics,
Plasma-wall interactions during high density operation in LHD
Introduction of 9th ITPA Meeting, Divertor & SOL and PEDESTAL Jiansheng Hu
Edge-SOL Plasma Transport Simulation for the KSTAR
ASIPP HT-7 The effect of alleviating the heat load of the first wall by impurity injection The effect of alleviating the heat load of the first wall by.
HT-7 ASIPP The Influence of Neutral Particles on Edge Turbulence and Confinement in the HT-7 Tokamak Mei Song, B. N. Wan, G. S. Xu, B. L. Ling, C. F. Li.
EFDA EUROPEAN FUSION DEVELOPMENT AGREEMENT Task Force S1 J.Ongena 19th IAEA Fusion Energy Conference, Lyon Towards the realization on JET of an.
ITER STEADY-STATE OPERATIONAL SCENARIOS A.R. Polevoi for ITER IT and HT contributors ITER-SS 1.
DIVERTOR INVESTIGATIONS ON NSTX-U LEADING TO FNSF Mike Kotschenreuther Brent Covele Swadesh Mahajan Prashant Valanju Jonathan Roeltgen Zhong-Ping Chen.
Erosion/redeposition analysis of CMOD Molybdenum divertor and NSTX Liquid Lithium Divertor J.N. Brooks, J.P. Allain Purdue University PFC Meeting MIT,
JT-60U -1- Access to High  p (advanced inductive) and Reversed Shear (steady state) plasmas in JT-60U S. Ide for the JT-60 Team Japan Atomic Energy Agency.
Improved performance in long-pulse ELMy H-mode plasmas with internal transport barrier in JT-60U N. Oyama, A. Isayama, T. Suzuki, Y. Koide, H. Takenaga,
ASIPP HT-7 Behaviors of Impurity and Hydrogen Recycling on the HT-7 Tokamak J. Huang*, B.N. Wan, X.Z. Gong, Z.W. Wu and the HT-7 Team Institute of Plasma.
ASIPP, 24/ Modelling of near LH effects on the SOL, in view of extrapolation to ITER V. Petrzilka 1, G. Corrigan 2, P. Belo 3, A. Ekedahl 4, K.
1 EAST Recent Progress on Long Pulse Divertor Operation in EAST H.Y. Guo, J. Li, G.-N. Luo Z.W. Wu, X. Gao, S. Zhu and the EAST Team 19 th PSI Conference.
ERO code development A. Kirschner M. Airila, D. Borodin, S. Droste, C. Niehoff  The ERO code  ERO code management  Modelling of CH 4 puffing in ASDEX.
045-05/rs PERSISTENT SURVEILLANCE FOR PIPELINE PROTECTION AND THREAT INTERDICTION Taming The Physics For Commercial Fusion Power Plants ARIES Team Meeting.
PERSISTENT SURVEILLANCE FOR PIPELINE PROTECTION AND THREAT INTERDICTION FDF: PWI issues and research opportunities Peter Stangeby University of Toronto.
18th International Spherical Torus Workshop, Princeton, November 2015 Magnetic Configurations  Three comparative configurations:  Standard Divertor (+QF)
ZHENG Guo-yao, FENG Kai-ming, SHENG Guang-zhao 1) Southwestern Institute of Physics, Chengdu Simulation of plasma parameters for HCSB-DEMO by 1.5D plasma.
LI et al. 1 G.Q. Li 1, X.Z. Gong 1, A.M. Garofalo 2, L.L. Lao 2, O. Meneghini 2, P.B. Snyder 2, Q.L. Ren 1, S.Y. Ding 1, W.F. Guo 1, J.P. Qian 1, B.N.
Fast response of the divertor plasma and PWI at ELMs in JT-60U 1. Temporal evolutions of electron temperature, density and carbon flux at ELMs (outer divertor)
Development and Assessment of “X-point limiter” Plasmas M. Bell, R. Maingi, K-C. Lee Coping with both steady-state and transient (ELM) heat loads is a.
Radiation divertor experiments in the HL-2A tokamak L.W. Yan, W.Y. Hong, M.X. Wang, J. Cheng, J. Qian, Y.D. Pan, Y. Zhou, W. Li, K.J. Zhao, Z. Cao, Q.W.
V. A. Soukhanovskii, XP1002 Review, 9 June 2010, Princeton, NJ 1 of 9 XP 1002: Core impurity density and P rad reduction using divertor condition modifications.
JET EDGE2D Modeling using W bundling Jim Strachan EDGE2D/EIRENE fluid ions and (Monte Carlo neutrals) models the pedestal, SOL, and divertor Used (85 publications)
HT-7 ASIPP Investigation on Z eff and impurities behavior with molybdenum limiter in lithium coating experiments on HT-7 tokamak Presented by Y.J.Chen.
Study of Beam Properties at SECRAL and The Solenoid Pre-focusing LEBT
Temperature Measurements of Limiter Surfaces at High Heat Flux in the HT-7 Tokamak H. Lin, X.Z. Gong, J. Huang, J.Liu, B. Shi, X.D. Zhang, B.N. Wan,
Features of Divertor Plasmas in W7-AS
Similarities and differences in SOL physics
Major aims of IPP-NIFS collaboration on divertor physics
Recycling and impurity retention in high-density,
Finite difference code for 3D edge modelling
LH Generated Hot Spots on the JET Divertor
ITER consequences of JET 13C migration experiments Jim Strachan, PPPL Jan. 7, 2008 Modeled JET 13C migration for last 2 years- EPS 07 and NF paper in prep.
Presentation transcript:

ASIPP HT-7 belt limiter Houyang Guo, Sizhen Zhu and Jiangang Li Investigation of EAST Divertor Asymmetry in Plasma Detachment & Target Power Loading Using B2/Eirene Seminar presented at AS-IPP, Hefei, 10/10/2006

Acknowledgements HT-7 belt limiter Jiangang Li, Baonian Wan, Yuanxi Wan, Sizhen Zhu for support of this work. Youzhen He, Weiping Huang, Qing Li, Ying Zhang for facilitating my visit. And all of you!

Introduction HT-7 belt limiter A major concern for EAST and future high- powered steady-state machines such as ITER is the power handling capability of divertor target plates. Localized injection of highly radiating impurities such as Ne may provide as a means of reducing power fluxes to the divertor targets and actively controlling inner/outer divertor asymmetry in power loading.

Outline HT-7 belt limiter EAST divertor geometry and major modeling parameters for B2/Eirene – SOLPS4.0. Basic performance of EAST divertor in terms of target power loading and impurity screening for both single-null and double-null configurations. Active control of plasma detachment and target power loading using neon puffing. Summary and conclusions.

Unique Features of EAST HT-7 belt limiter High power 1 st phase: 10 MW 2 nd phase: 20 MW (with NB) And Long pulse 1000 s, sustained by LHCD

EAST was built to allow both single null and double null divertor operations HT-7 belt limiter

Basic Divertor Functions HT-7 belt limiter Exhaust power and particles (including helium ash in a reactor) Provide sufficient screening for impurities to minimize core contamination

A major concern for EAST and ITER is divertor power handling capability - Provided by Dr. Damao Yao

Modeling of Divertor Performance Using B2/Eirene – SOLPS 4.0 B2/Eirene code package – SOLPS 4.0  A multi-fluid code B2 for electrons and ions, and  A Monte-Carlo code Eirene for neutrals Major control parameters  Total heat fluxes from confined core: P s  4 MW (equally split between the i and e channels) P s,out  3P s,inn for double dull configuration n s = 0.5  3.5  m -3  ITER-like cross-field transport: D  = 0.3 m 2 s -1  i   e  1.0 m 2 s -1

Impurity Sources (1) Intrinsic Carbon  Physical sputtering  Chemical sputtering Y ch = 2% (2) Active neon puffing  To reduce target power loading  Control divertor inner/outer asymmetry

As expected, CDN reduces peaked heat fluxes to both targets. Z s is also reduced for CDN. However, plasma detaches at inner target occurs at a much lower density for CDN, thus resulting in strong divertor asymmetry. Comparison between single null (SN) & double null (CDN) configurations

Plasma is fully detached from inner target, with heat flux to the target dramatically reduced. Heat flux at the outer strike point is substantially reduced - a key feature of vertical divertor, but remains high elsewhere.  Localized gas puffing from outer divertor may accelerate detachment, further reducing heat flux to the outer divertor. CDN operation leads to stronger divertor asymmetry n s = 1.5  m -3

Consequences of Divertor Asymmetry HT-7 belt limiter  Full plasma detachment at inner target may lead to confinement degradation due to excessive neutral influxes around X-point to the core.  Further, most of the outer divertor plasma still remains attached, with substantial power flux going to the outer target, which is undesirable for long pulse operation.

Ne is introduced from outer lower divertor. Ne is well restricted to the vicinity of lower divertor due to strong divertor screening for Ne. However, significant radiation from neon is also present in the inner divertor, presumably due to leakage of Ne through private region or around X-point. Localized neon puffing is used as a means to reduce heat flux to outer target Ne

It is remarkable that neon puffing does not appear to affect much the edge impurity content, suggesting very strong divertor screening for neon under modeled conditions. Nevertheless, Ne puffing dramatically reduces heat fluxes to the outer target

To further reduce heat flux to the outer target and divertor asymmetry:  Optimizing Ne puffing location to maximize Ne ionization inside outer divertor.  Inducing SOL flow by mid- plane fueling & pumping.  A physical septum may help preventing direct Ne leakage from outboard into inboard. Work in progress: Reduce neon leakage into inner divertor

Summary & Conclusions HT-7 belt limiter  A major concern for EAST and future high-powered steady-state machines such as ITER is the power handling capability of divertor target plates.  As expected, double null operation distributes output power more widely, reducing peak target power loading.  However, double null leads to early detachment at inner target, resulting in strong divertor asymmetry.  Ne puffing from outer divertor dramatically reduces peak heat flux to the target, without affecting much Zeff.  To further reduce outer target power loading and divertor asymmetry, Ne leakage into inner divertor must be minimized.