(2) Respiratory acidosis 1) Concept 2) Causes and Pathogenesis 3) Compensation 4) Effects on the body 5) Principle of treatment.

Slides:



Advertisements
Similar presentations
DEFINITIONS acidemia/alkalemia acidosis/alkalosis an abnormal pH
Advertisements

Acid-Base Balance Nestor T. Hilvano, M.D., M.P.H..
1 Acid and Base Balance and Imbalance. 2 pH Review pH = - log [H + ] H + is really a proton Range is from If [H + ] is high, the solution is acidic;

Acid-Base Disturbances
1 Acid and Base Balance and Imbalance Dr. WASIF ALI KHAN MD-PATHOLOGY (UNIVERSITY OF BOMBAY) Assistant Prof. in Pathology Al Maarefa College.
1.  pH = - log [H + ]  H + is really a proton  Range is from  If [H + ] is high, the solution is acidic; pH < 7  If [H + ] is low, the solution.
HUMAN RENAL SYSTEM PHYSIOLOGY Lecture 11,12
Unit III: Homeostasis Acid-Base Balance Chapter 24: pp
Prof. M. Tatár Dept. of Pathophysiology JLF UK
1 Section 2. Simple types of acid-base disturbance (1) Metabolic acidosis (1) Metabolic acidosis (2) Respiratory acidosis (2) Respiratory acidosis (3)
Renal Acid-Base Balance. Acid An acid is when hydrogen ions accumulate in a solution. It becomes more acidic [H+] increases = more acidity CO 2 is an.
Measured by pH pH is a mathematical value representing the negative logarithm of the hydrogen ion (H + ) concentration. More H + = more acidic = lower.
Introduction to Acid-Base Balance N132. Acid_Base Chemistry  Acids E.g carbonic acid (H 2 CO 3 ) *Most Common  Bases E.g bicarbonate (HCO3-) *Most.
Arterial blood gas By Maha Subih.
Acid-base balance and disturbance Normal acid-base balance Parameters of acid-base balance Simple acid-base disturbance Mixed acid-base disturbance.
Acid-Base Imbalances. pH< 7.35 acidosis pH > 7.45 alkalosis The body response to acid-base imbalance is called compensation May be complete if brought.
1 Acid and Base Balance and Imbalance. 2 pH Review pH = - log [H + ] H + is really a proton Range is from If [H + ] is high, the solution is acidic;
Dr. Saidunnisa Professor Of Biochemistry Acid-Base regulation.
Renal Physiology 1 PART THREE Renal Acid-Base Balance.
Acid-Base Imbalance NRS What is pH? pH is the concentration of hydrogen (H+) ions The pH of blood indicates the net result of normal acid-base.
1 Acid –Base Imbalance Dr. Eman EL Eter. Acid-Base Imbalances 2 pH< 7.35 acidosis pH > 7.45 alkalosis PCO2= mmHg HCO3- = mEq/L The body response.
© 2012 Pearson Education, Inc. Figure 27-1a The Composition of the Human Body SOLID COMPONENTS (31.5 kg; 69.3 lbs) ProteinsLipidsMineralsCarbohydratesMiscellaneous.
Acid-Base Balance KNH 413. Acid-Base Balance Acids- rise in pH Donate or give up H+ ions Nonvolatile acids or fixed acids Inorganic acids that occur through.
1 Acid and Base Balance and Imbalance. pH Review pH = - log [H + ] pH = - log [H + ] H + is really a proton H + is really a proton Range is from
(3) Metabolic alkalosis 1) Concept 2) Classification and Pathogenesis 3) Compensation 4) Effects on the body 5) Principle of treatment.
1 (4) Respiratory alkalosis 1) Concept Respiratory alkalosis is defined as a primary decrease in [H 2 CO 3 ] ([CO 2 ], PaCO 2 ) in plasma Respiratory alkalosis.
ACIDS AND BASES. pH Review ECF pH = 7.4 Tightly regulated –Fatal if pH 7.25 > pH > 7.55 –Nec for proper enzyme activity May  change protein shape (enzymes)
Respiratory failure Respiratory failure is a pathological process in which the external respiratory dysfunction leads to an abnormal decrease of arterial.
Figure 27-1a The Composition of the Human Body.
万用卡 The Pathophysiology of Respiratory Failure Department of pathophysiology Jianzhong Sheng MD PhD.
Acid-Base Balance Disturbances. Acids are produced continuously during normal metabolism. (provide H+ to blood) H + ion concentration of blood varies.
Fluid and Electrolyte Imbalance
酸碱平衡及紊乱 Acid – Base Balance and Disturbances. Acid-Base Balance Maintenance of the H + concentration in body fluid in a normal range H + mol/L pH Extracellular.
Acid Base Imbalances. Acid-Base Regulation  Body produces significant amounts of carbon dioxide & nonvolatile acids daily  Regulated by: Renal excretion.
Acid-Base Balance KNH 413. Acid-Base Balance Acids Donate or give up H+ ions Rise in pH as a result! Nonvolatile acids or fixed acids CO2 indirect measure.
Acid-Base Balance Disturbances
Acid-Base Balance Disturbances. Acids are produced continuously during normal metabolism. (provide H+ to blood) H + ion concentration of blood varies.
Dr. Nasim AP biochem 1.  pH = - log [H + ]  H + is really a proton  Range is from 0 – 14  If [H + ] is high, the solution is acidic; pH < 7  If [H.
Buffer systems. RESPONSES TO: ACIDOSIS AND ALKALOSIS Mechanisms which protect the body against life-threatening changes in hydrogen ion concentration:
March 16Acid-base balance1 Kidneys and acid-base balance.
Physiology of Acid-base balance-2 Dr. Eman El Eter.
Acid-base Regulation in human body
DR..ALI A. ALLAWI CONSULTANT INTERNIST&NEPHROLOGIST COLLEGE OF MEDICINE BAGHDAD UNIVERSITY.
Acid Base Balance Marion Technical College NUR 1021 Spring 2016.
Acid-base balance and acid-base disturbance. I.regulation of acid-base balance 1. origin of acid and base in the body volatile acid: H 2 CO 3 (15mol/day)
Acid-Base Balance Prof. Omer Abdel Aziz. Objectives Definition Regulation Disturbances.
Acid Base Balance B260 Fundamentals of Nursing. What is pH? pH is the concentration of hydrogen (H+) ions The pH of blood indicates the net result of.
1 Acid and Base Disturbance. 2 pH Review H + is a proton pH Range is from If [H + ] is high, the solution is acidic; pH < 7 If [H + ] is low, the.
Acid-Base Imbalance.
Department of Biochemistry
Acid base principles and disorders
Acid-Base Imbalance.
ACID – BASE DISORDERS M. Tatár.
INTERVENTIONS FOR CLIENTS WITH ACID- BASE IMBALANCE
Acid-Base Imbalance.
acid-base disturbance
Acid and Base Disturbance
Acid-Base Imbalance.
Acid and Base Balance and Imbalance
Acid-Base Balance KNH 413.
Acid-Base Balance KNH 413.
The Pathophysiology of Respiratory Failure
Arterial Blood Gas Analysis
Acid-Base Balance KNH 413.
Acid-Base Balance KNH 413.
Acid-Base Balance KNH 413.
Department of Biochemistry
Renal Handling of H+ concentration
Acid-Base Balance KNH 413.
Presentation transcript:

(2) Respiratory acidosis 1) Concept 2) Causes and Pathogenesis 3) Compensation 4) Effects on the body 5) Principle of treatment

1) Concept Respiratory acidosis refers to the primary increase of [H 2 CO 3 ], which is initiated by an elevation of carbon dioxide tension (increased PaCO 2 ). The increase of [H 2 CO 3 ] is also called hypercapnia.

2) Causes and Pathogenesis The basic reasons: (a) decreased ventilation, which leads to the decreased elimination of CO 2 from lung; (b) increased inhalation of CO 2. Acute Chronic

(a) Acute respiratory acidosis a) depression of respiratory center by cerebral diseases (trauma, infections) and drugs (over- dosage of anesthetics, sedatives), b) neuromuscular disorders (acute hypokalemia, poliomyelitis 脊髓灰白质炎, Guillain-Barre syndrome 脊神经根炎 ), c) cardiopulmonary arrest. d) obstruction of respiratory tract. e) Chest wall diseases (fracture of rib), f)mis-operating of respirator. (b) increased inhalation of CO 2.

(b) Chronic respiratory acidosis Chronic obstructive pulmonary diseases (emphysema, chronic bronchitis with hypoventilation) cause the chronic respiratory acidosis. Brain tumors (affecting the respiratory center in which the ventilation is decreased)

3) Compensation against respiratory acidosis (a) Non- [HCO 3 ¯ ]/[H 2 CO 3 ] buffering systems (b) Cellular compensation H + moves into the cell CO 2 moves into the cells (c)The renal compensation for chronic resppiratory acidosis. ( How about buffer pair: [HCO 3 ¯ ]/[H 2 CO 3 ] and respiratory compensation? )

(a) Non- NaHCO 3 /H 2 CO 3 buffering systems Hb - /HHb HbO - 2 /HHbO 2 Pr - /HPr Phosphate

(b) H + moves into the cell

(c) CO 2 moves into the cells When CO 2 in ECF(serum) is increased, CO 2 will move into the cells, CO 2 combines H 2 O to form carbonic acid, then H 2 CO 3 dissociates to form H + and HCO 3 ¯. The HCO 3 ¯ moves out of the cells as a exchange for electric neutrality, at the same time Cl ¯ moves into the cells for electrical balance. HCO 3 ¯ and Cl ¯ exchange

Predicted compensatory formula of acute respiratory acidosis ΔHCO 3 - = 0.1x ΔPaCO 2 ± 1.5 HCO 3 - = x ΔPaCO 2 ± 1.5 Secondary compensation, primary change The maximal increased value up to 30 mmol/L Decompensation

(c) The renal compensation The renal compensation in respiratory acidosis is the same as the renal compensation in metabolic acidosis. a) The activity of carbonic anhydrase (CA) increases, b) The activity of glutaminase is increased, more NH 4 + is excreted into tubular lumen. c) The end urine is more acidic. (NaH 2 PO 4 )

Predicted compensatory formula of chronic respiratory acidosis ΔHCO 3 - = 0.4x ΔPaCO 2 ± 3 HCO 3 - = x ΔPaCO 2 ± 3 Secondary compensation primary change Value measured > value predicted: with metabolic alkalosis Value measured < value predicted: with metabolic acidosis. Maximal compensatory value up to:45mmol/L

Changes of laboratory parameters Primary increase of [H 2 CO 3 ]: PaCO 2 ? Secondary compensation: AB,SB,BB ??? AB ?? SB BE ? pH ?

Changes of laboratory parameters Primary increase of [H 2 CO 3 ]: PaCO 2 increases Secondary compensation: AB,SB,BB increases AB > SB BE positive value increases pH tends to decrease.

4)Effects on the body In metabolic acidosis the [H + ] in plasma is increased. In respiratory acidosis both [H + ] and CO 2 concentration are increased. The main manifestations are: (A) depression of mental activity (B) effects on the cardiovascular system. (C) hyperkalemia

(A) Depression of mental activity (a) Manifestations Obtundation (thinking slowly), headache, somnolence 嗜睡, confuse, coma and asterixis (fluttering-like tremor ) may be noted. These effects on CNS caused mainly by elevated CO 2 have been termed “CO 2 narcosis”. Pulmonary encephalopathy 肺性脑病 in respiratory failure. l

(b) Mechanisms a) Increased [H + ] cause cerebral vasodilatation, then cause brain edema. Increased blood volume will cause high intracranial pressure. b) High [H + ] increases the permeability of cerebral blood vessels. Decreased plasma COP and increased interstitial COP can lead to brain edema.

Glutamic acid Glutamate decarboxylase gama r-GABA, r- gama aminobutyric acid r-GABA transaminase Succinic acid Kreb’s cycle C) The production of GABA (gama aminobutyric acid, a inhibitory transmitter) is increased due to the activity of enzyme for the production is increased, and the activity of enzyme for the decomposition is decreased in low pH (acidosis). C) The production of GABA (gama aminobutyric acid, a inhibitory transmitter) is increased due to the activity of enzyme for the production is increased, and the activity of enzyme for the decomposition is decreased in low pH (acidosis).

d) Increased CO 2 leads to ( brain ) vasodilation directly. (higher intracranial pressure) Increased [CO 2 ] stimulates via chemoreceptor sympathetic activity, then leads indirectly to stronger vasoconstriction than vasodilation. There is no α-receptor in cerebral vessels, so vasodilation in brain.

(B) Effects on the cardiovascular system (a) Impairment of myocardial contraction (b) The hemodynamic effect (c) Arrhthmias due to hyperkalemia (C) hyperkalemia

5) Principle of treatment (a) Treat the primary diseases which cause respiratory acidosis. (antibiotic, antispastic drugs) (b) Improve properly the ventilation. (c) Prevent from (respiratory alkalosis) over- ventilation during artificial respiration.

Case Discussion No.3 Female, 11 years old. Guillain-Barre syndrome before respirator after respirator pH PaCO 2 (mmHg) BE(mmol/L) BB(mmol/L) SB(mmol/L) AB(mmol/L)

Before:Decompensatory respiratory acidosis After: Decompensatory metabolic alkalosis. Reasons: too fast elimination of CO 2 slow renal elimination of HCO 3 -

(c) Can we replenish alkaline (HCO 3 ¯, sodium lactate ) to the patients with respiratory acidosis? (d) pay attention to [K + ] in serum during the treatment of acidosis.

Case Discussion A 52-year-old man with chronic obstructive lung disease was admitted to the hospital with worsening dyspnea. He appeared cyanotic and in respiratory distress. The laboratory data: Arterial blood: pH=7.34 PaCO 2 =60 mmHg PaO 2 =50 mmHg [HCO 3 - ]=31mmol/L. ΔHCO 3 - = 0.4x ΔPaCO 2 ± 3=??