1 Ann Van Lysebetten CO 2 cooling experience in the LHCb Vertex Locator Vertex 2007 Lake Placid 24/09/2007.

Slides:



Advertisements
Similar presentations
24 June 2010 Immanuel Gfall (HEPHY Vienna) CO 2 Cooling for PXD/SVD IDM Meeting.
Advertisements

1 Nikhef Activities on CO 2 Cooling Bart Verlaat, Nikhef Introduction meeting with FOM director W. van Saarloos 1 Picture: LHCb-VELO evaporator.
IEEE Dresden, Wim de Boer, Univ. Karlsruhe An optimized tracker design using CO2 cooling Outline: 1.Requirements for sLHC trackers (massless.
MICE Hydrogen System Implementation Tom Bradshaw Elwyn Baynham Iouri Ivaniouchenkov Jim Rochford.
Fcal upgrade for sLHC: Cryogenics modifications – TE-CRG/ C.Fabre 1 ATLAS FCal Upgrade for sLHC: Modifications to the Calorimeter Cryogenic.
Wim de Boer, Univ. Karlsruhe 1Jan.2009 Design considerations for a CMS CO2 cooling system CMS specials: 50 kW cooling system at C (see below) Difficulties:
1 CO 2 cooling of an endplate with Timepix readout Bart Verlaat, Nikhef LCTPC collaboration meeting DESY, 22 September
23 Jan 2007 LASA Cryogenics Global Group 1 ILC Cryomodule piping L. Tavian for the cryogenics global group.
CO 2 Development of the Velo Thermal Control System (VTCS)
Status overview of the cooling 31 August 2015 Bart Verlaat, Raphael Dumps 1.
Wim de Boer, Univ. Karlsruhe 1Jan.2009 Design considerations for a CMS CO2 cooling system CMS specials: 50 kW cooling system at C (see below) Difficulties:
CMS CO2 Test Stand Specifications and Installation Status Erik Voirin Fermilab PPD - Process Engineering Group CMS CO2 Cooling Test Stand1.
The SPD cooling plant: status and plan of upgrades Rosario Turrisi.
Refrigeration Basics 101.
VTCS overview 13 April 2006 NIKHEFBart Verlaat 1 NIKHEF involvement in VELO ~1 m module support CO 2 cooling detector "hood" kapton cables Vacuum vessel.
Concept idea for the modular 2PACL system for the Atlas ITK 3 June 2015 Bart Verlaat 1.
INTEGRATION OF THE CBM SILICON TRACKING SYSTEM U. Frankenfeld for the CBM collaboration supported by BMBF, EU-FP7 HadronPhysics3 and CRISP.
LHCb VELO Meeting LHCb VELO Cooling System Bart Verlaat (NIKHEF) 25 February 2003.
CMS FPIX Cooling System Studies Joe Howell, Fermilab for the FPIX Upgrade Mechanical Working Group CMS Upgrade Workshop April 27,
1 GL th IIF/IIR Gustav Lorentzen Conference on Natural Working Fluids Bart Verlaat National Institute for Subatomic Physics (NIKHEF) Amsterdam, The.
J. Direito - M. Battistin – 28 th May 2010EN/CV/DC J. Direito, M. Battistin (EN/CV/DC) 28 th May 2010 Detector Cooling Project III Thermosiphon Workshop.
Hall D Target System Review J. FochtmanSeptember 28,2011 Preliminary Design Work.
IBL cooling thermal chock incident 15 October The IBL cooling team.
LHCb-VELO Microchannel fracture safety system and evaporator concept 26 June 2015 Bart Verlaat 1.
Workshop Chamonix XV27-January-2006 DivonneMassimiliano Ferro-Luzzi 1 State of LHCb for the Sector Test  Overview  Agreement  Status of –VELO –exit.
CO 2 Cooling: Overview over CMS activities Jennifer Merz RWTH Aachen University, 1. Physikalisches Institut B May CEC General Meeting, Karlsruhe.
Cooling plant upgrade Jose Botelho Direito, Michele Battistin, Stephane Berry, Sebastien Roussee 2 nd SPD Cooling Workshop 30/11/201112nd SPD.
AIDA Traci commissioning LHCb – CO 2 cooling meeting 18 March 2015 Kamil Wojdyla, Lukasz Banasik, Nicola Spadavecchia, Tomasz Kucharski, Piotr Dziurdzia,
1 Engineering Forum: experiences from cooling systems for LHC detectors Bart Verlaat National Institute for Subatomic Physics (NIKHEF) Amsterdam, The Netherlands.
UT cooling discussion 3 december 2014
Limits of the current VTCS Ann Van Lysebetten Bart Verlaat Martin van Beuzekom VELO upgrade meeting 14/11/2008 pix module construction kick-off 09/11/2009.
Cooling System Solutions
CO2 cooling in CMS General overview 30 July 20101Hans Postema - CERN.
Refrigeration Cycles A Carnot cycle in reverse QL QH T s 2
IBL CO 2 cooling planning 03 July 2013 Jan Godlewski, Bart Verlaat, Lukasz Zwalinski 1
CO 2 Controlling a 2-phase CO2 loop using a 2-phase accumulator
Reviewers report of the LHCb C0 2 cooling EDR EDR date: 3 rd of December January
LHCb-UT and Velo Upgrade Road to a system EDR in Q June 2015 Bart Verlaat 1.
Overview of recent CO 2 cooling developments As an example for LHCb-Velo and UT cooling? Kick-off meeting 28 may 14 Bart Verlaat 1.
Aachen Status Report: CO 2 Cooling for the CMS Tracker at SLHC Lutz Feld, Waclaw Karpinski, Jennifer Merz and Michael Wlochal RWTH Aachen University, 1.
A two-stage system for the future cooling system.
19 December 2006Eddy Jans Annual Scientific Meeting0 The advent of the VELO introduction sensors mechanics vacuum motion cooling PU-modules installation.
21 June Experiences with CO 2 cooling hardware and applied designs. Experiences from past CO 2 systems and philosophies for the.
A.P.Colijn1 Nikhef Nikhef – History CO Nikhef - Who is Who CO Nikhef - Work in Progress CO Nikhef - Plans.
H.-G. Moser, PXD Workshop, Valencia, January 2016 IBBelle for VXD 1 Use one unit first Assemble on a platform which fits in a 20’ container No redundancy.
CO 2 Cooling Plants for the LHCb upgrade LHCb infrastructure workshop February Burkhard Schmidt With input from Bart Verlaat, Paolo Petagna and Lukasz.
Status CO2 Cooling IBBelle: Reconnection after Belle II Roll in
Feedback on transfer line sizing and flow calculations for UT
Design of the thermosiphon Test Facilities 2nd Thermosiphon Workshop
ARAC/H/F Air-cooled water chillers, free-cooling chillers and heat pumps Range: kW.
VELO Thermal Control System
Performance of a CO2 System with Four Parallel Pipes
Forum on Tracking Detector Mechanics - Bonn, May 2016
Aachen Status Report: CO2 Cooling for the CMS Tracker
Microfluidic devices for thermal management
Aachen Status Report: CO2 Cooling for the CMS Tracker at SLHC
VELO Thermal Control System
Nikhef Nikhef – History Nikhef - Who is Who
Pixel CO2 Cooling Status
Recirculating CO2 System
VELO Thermal Control System
Members of project: Christian Brosch Andreas Maier Tamara Bubeck
Aachen Status Report: CO2 Cooling for the CMS Tracker
CO 2 CO2 cooling experiences in the LHCb Velo Thermal Control System
Cryogenic System Commissioning Summary Report
By: JAGDEEP SANGWAN Refrigeration Basics 101.
CO 2 CO2 Cooling for HEP experiments Bart Verlaat TWEPP-2008
CO 2 CO2 COOLING FOR THE LHCB-VELO EXPERIMENT AT CERN Bart Verlaat
Presentation transcript:

1 Ann Van Lysebetten CO 2 cooling experience in the LHCb Vertex Locator Vertex 2007 Lake Placid 24/09/2007

Outline Ann Van Lysebetten Vertex2007, Lake Placid  VeLo Introduction  VELO CO 2 Cooling system  Evaporator Lab performance  Cooling plant operation  Major challenges  Final Cooling plant performance  Module Thermal performance  Conclusions 2

3 VErtex LOcator Silicon sensors Vacuum vessel rf-box rectangular bellows exit window wake field suppressor kaptons Ann Van Lysebetten Vertex2007, Lake Placid

4 VELO detector half Ann Van Lysebetten Vertex2007, Lake Placid kaptons silicon sensors cooling pipes + cookies manifold Beam (7mm)

VELO cooling requirements Ann Van Lysebetten Vertex2007, Lake Placid5 Temperature silicon sensors ~-5ºC at all times  cooling temperature of -25ºC VELO Thermal Control System based on CO 2 Evaporator  Harsh non-uniform radiation environment  avoid thermal runaway in silicon  hold reverse annealing  radiation hard refrigerant  Vacuum  Direct contact between cooling and module  No connections but failsafe orbital welds  In LHCb acceptance  low mass system  No mechanical stress on the module  Cooling capacity up to 800W/half

The CO2 cooling principle No local evaporator control, evaporator is passive in detector prim. System H 2 O 10  C Sec. System (freon) Tert. System (CO2) Detector waste heat Tertiary System: two-phase accumulator controlled system 6 Ann Van Lysebetten Vertex2007, Lake Placid

7 Ann Van Lysebetten Vertex2007, Lake Placid Accumulator pressure = detector temperature Transfer tube heat exchange brings evaporator pre expansion per definition right above saturation Saturation line Capillary expansion brings evaporator blocks in saturation Detector load The CO2 cooling cycle

The implementation Vertex2007, Lake Placid Evaporator : VTCS temperature ≈ -25ºC Total Evaporator load ≈ Watt Completely passive Accessible and a friendly environment Inaccessible and a hostile environment R507a Chiller 6 2-phase Evaporator 5 4 Cooling plant: Sub cooled liquid CO 2 pumping 12.5 kg CO 2 per half CO 2 condensing to a R507a chiller CO 2 loop pressure control using a 2- phase accumulator Redundancy with spare pump and backup chiller Control of the system by Siemens PLC Ann Van Lysebetten 8

9 The cooling plant CO 2 unit freon chiller 9 Ann Van Lysebetten Vertex2007, Lake Placid 3 CO 2 pumps Accumulators Heat exchanger 2 Compressors (Air and water chiller)

10 Accumulator CO 2 pumps Compressors Ann Van Lysebetten Vertex2007, Lake Placid valves

Installation at CERN July- August 2007 CO 2 Unit Freon Unit Controls PLC Ann Van Lysebetten Vertex2007, Lake Placid11

12 23 parallel evaporator stations + Al cast cooling blocks vacuum feed through capillaries and return hose liquid inlet vapor outlet PT100 cables capillaries  inner =0.5mm The Evaporator Ann Van Lysebetten Vertex2007, Lake Placid

13 Ann Van Lysebetten Vertex2007, Lake Placid 23 parallel evaporator stations + Al cast cooling blocks vacuum feed through capillaries and return hose liquid inlet vapor outlet PT100 cables capillaries  inner =0.5mm The Evaporator

14 Mass flow Mod25 Mod16 evaporator total mass flow [g/s] temperature [ o C] annular gas+liquid flow nominal flow = 12 g/s dry out Evaporator Lab Performance Ann Van Lysebetten Vertex2007, Lake Placid heat load 1.4x nominal

From room temperature to set-point of-25 ºC Ann Van Lysebetten Start-up in ~2 hours A B C D Pump pressure (Bar) Accumulator pressure (Bar) Pumped liquid (ºC) Evaporator (ºC) Transfer return (ºC) Accu heating/cooling (W) Accu level (%) time Temp (  C), Pressure (bar), Level (%) Operation: start-up 15

Ann Van Lysebetten Major Challenges 16 Hardware concerns Pumps problems for cold start-up  sphere valve secured by a spring pump-membrane failure as result of vacuuming  pump filling now done by flushing. pump discharge burst discs replaced by spring relieves Heat exchanger from food industry (no mixing between coolants) + reinforced to withstand 200bar Safety Procedures Accu working pressure 130bar, V =14l  European directive for high pressure vessels  CE certification PLC control loops Accu control see next slides Vertex2007, Lake Placid

VTCS Accumulator Control 2PACL Start-up Heater power (%) Accu Level (%) Heater temp. (ºC) Liquid temp. (ºC) Pump inlet (ºC) Accumulator Pressure (Bar) Pump head (Bar) Decrease heater power near critical point to prevent dry- out Thermo siphon heater for pressure increase (Evaporation) Cooling spiral for pressure decrease (Condensation) Accumulator Properties: Volume 14.2 liter (Loop 9 Liter) Heater capacity 1kW Cooling capacity 1 kW Ann Van Lysebetten Vertex2007, Lake Placid17 Accumulator pressure (bar) Thermal Resistance (mK/W)

VTCS Accumulator Control Ann Van Lysebetten Vertex2007, Lake Placid18 Evaporator pressure (Bar) Condenser Inlet (ºC) Pump inlet (ºC) Evaporator liquid in (ºC) Evaporative temp. (ºC) Accu PID control loop not adequate  temperature oscillations of a few degrees Needed tuning of PID control loop to solve problem

Temperature (  C) VTCS Evaporator performance VTCS Evaporator performance Stability and response to heat-load changes Evaporator Temp (ºC) Accu Temp ≈ Set-point (ºC) Detector Power (Watt) 600 Watt Accu level (‰) Accu Cooling Power (Watt) Pumped Liquid Temp (ºC) Ann Van Lysebetten Vertex2007, Lake Placid Power (Watt) 19 Temperatures stable without pressure =-25ºC: Accumulator temp: -24.8ºC Evaporator temp(No Load): -23.4ºC Evaporator temp(600 W Load):-23.0ºC Stabilization time from 0 to 600 Watt: ca. 7min Temperature stability: <0.25ºC

20 Ann Van Lysebetten Vertex2007, Lake Placid Module Cooling Cooling system at -25 o C Module Unpowered Module Powered Total Chip Power : ~19W 2 NTCs to monitor temperature on hybrid NTC0 NTC1

21 Ann Van Lysebetten Vertex2007, Lake Placid Module Cooling & Performance Right/C halfLeft/A half  T(Setpoint – NTC1) Cooling system to silicon Measurement conditions not exactly as! final system (vacuum, not all modules cooled simultaneously, …) Small variations in power consumption, modules assembly, evaporator stations  variations in  T  T(Cool. Cookie-NTC0) Transfer cool-module  T(NTC0-NTC1) Module performance  setpoint-cool. Cookie) with setpoint of -25  C: with setpoint of -25  C: (-4.2±1.4 )  C (-5.2±1.5)  C Min  C Max  C Min  C Max  C

Conclusions Ann Van Lysebetten Vertex2007, Lake Placid22  All stringent requirements met  Setpoint temperatures go down to ~ -35  C  System proves stable operation:  without loads/with loads up to 800W  Module thermal performance + CO2 cooling at -25  C  All modules at all times below 0  C  Low mass system without mechanical stress on module  Redundancy built in  VELO CO 2 cooling system is installed and commissioned  PLC control successful  all routines implemented  1 button start/stop for main system Looking forward to enter the final commissioning phase with the VELO installed!

Back Up Slides Ann Van Lysebetten Vertex2007, Lake Placid

24 The cooling plant: CO 2 unit CO 2 -part 24 3 CO 2 pumps Ann Van Lysebetten Vertex2007, Lake Placid Accumulator Heat exchanger

25 Ann Van Lysebetten Vertex2007, Lake Placid The cooling plant: Freon unit 2 Compressors (Air and water chiller)

26 VELO detector half Ann Van Lysebetten Vertex2007, Lake Placid kaptons silicon sensors cooling pipes + cookies manifold Beam (7mm)

Main chiller performance –Dynamic range of main chiller works properly. –Full operational range (0 to 1800 Watt) possible in evaporator range (-25 º C to -30 º C) –Isolation needs improvement around injection valves –CO2 condensers/ Freon evaporator works beyond expectation (Hardly no dT between Freon and CO2 ) Back-up chiller performance –Able to maintain an un-powered CO2 evaporator at -10 º C Stand-alone test results of the VTCS cooling plant (No external evaporator, cooling over by-pass)

Transfer line Operation Transfer line Operation (Internal heat exchanger) [10] Evaporator pressure (Bar) [13] Condenser Inlet (ºC) [1] Pump inlet (ºC) Accumulator set-point [5] Evaporator liquid in (ºC) A B C B C Transfer line temperature profile A: Condenser and evaporator single phase B: Evaporator 2-phase, condenser single phase C: Both evaporator and Condenser 2- phase [14] Accumulator pressure (Bar) [10] Evaporative temp. (ºC) A Evaporator side Cooling plant side Ann Van Lysebetten Vertex2007, Lake Placid