Characterization of Structural Motifs for CO 2 Accommodation in Two Model Ionic Liquid Systems Using Cryogenic Ion Vibrational Predissociation Spectroscopy Joseph A. Fournier, Conrad T. Wolke, Christopher J. Johnson, and Mark A. Johnson Sterling Chemistry Laboratory, Yale University June 20, 2013
CO 2 Capture and Activation Masel, Science, 2011, 334, 643. CO 2 ↔ CO + ½O 2 V eq = 1.3 V In water: 2.1 V required to produce CO → 0.8 V overpotential In [emim]BF 4 : 1.5 V required to produce CO → 0.2 V overpotential
Ionic Liquids Liquid at or near room temperature Nonvolatile: “Green” solvents High CO 2 solubility Anion dependence: Ac – > Tf 2 N – > TFA > PF 6 – > BF 4 – J.F. Brennecke, E.J. Maginn. JACS, 2004, 124, 5300.
The Instrument ESI Needle Temperature Controlled Ion Trap Mounted to He Cryostat Ion Optics 2m Flight Tube Wiley- McLaren TOF Reflectron-1 Coaxial TOF Reflectron-2 DC-Turning Quad Pulsed Valve Electron Gun MCP Detector MCP Detector Nd:YAG OPO/OPA Tunable IR cm -1 Ion Optics Differential Aperture Skimmers Heated Capillary RF-Ion Guides Nd:YAG OPO/OPA Tunable IR cm -1 + e ‒ ∙ +
Predissociation Yield Photon Energy / cm -1 Ac ‒ ∙Ar Ac ‒ ∙CO 2 Ac ‒ ∙2CO 2 Ac ‒ ∙4CO 2 Ac ‒ asym. OCOAc ‒ sym. OCO ν 3 CO 2 * Ac – (CO 2 ) m
Pred. Yield Calculated Intensity Photon Energy / cm -1 Ac – (CO 2 ) 1 Pred. Yield Calculated Intensity Photon Energy / cm -1 Ac – (CO 2 ) 2 MP2/6-311+G(d,p)
Pred. Yield Calculated Intensity Photon Energy / cm -1 Ac – (CO 2 ) 4
How About a Real Ionic Liquid? [(emim) 2 BF 4 ] + +N 2 +2N 2 +3N m/z m/z 10 B 11 B 13 C
The IL “Building Block” Calculated Intensity Photon Energy / cm -1 Pred. Yield Why the complexity? B3LYP/6-31+G(d,p) Ring CH str. Me/Et CH str. Ring Str. Me/Et CH bends CH ip bend Mixed BF 4 /Ring Modes CH oop bends Conrad Wolke
Photon Energy / cm -1 N 2 Predissociation Yield [(emim) 2 BF 4 ] + [(emim) 3 (BF 4 ) 2 ] + Ring CH str. Me/Et CH str. Ring Str. Me/Et CH bends CH ip bend Mixed BF 4 /Ring Modes C 2 -H oop bend Absorption (%) Bulk Are the Gas-Phase Clusters Related to the Bulk??
Isomers? Pred. Yield Ion Dip Signal Photon Energy / cm -1 NO! Single Isomer!
Identifying the CH’s Photodissociation Yield Photon Energy / cm -1 X X X
Identifying the CH’s The Evidence: 1.Red-shifting of the ring CH’s (10-15 cm -1 ) from (2,1) to (3,2) cluster. 2.Double resonance reveals a single isomer. 3.Loss of specific bands upon methyl substitution at the C 2 position Photon Energy / cm -1 C 2 -H C 4 -H/C 5 -H C 2 -H ip bend C 4 -H/C 5 -H oop bend C 2 -H oop bend
m/z CO 2 Condensation in the Ion Trap +CO 2 +2CO 2 Optimal conditions: 5% CO 2 buffer gas, 90 K m/z [(emim) 2 BF 4 ] + [(bmim) 2 BF 4 ] + +CO 2 +2CO 2 WOW!!!
CO 2 Condensation in the Ion Trap: emim Pred. Yield Photon Energy / cm Å 5.3Å 3.1Å 2.8Å 3.5Å 2.7Å
Outlook Electrospray acetate-based ionic liquid Condense CO 2 onto the cluster in the trap Transfer intact, dissolved CO 2 -acetate complex from solution Determine structure of other ionic liquids (PF 6 -, TFA, Tf 2 N - ) and tag with CO 2 Next-generation instrumental improvements (trap-to-trap, reaction of ESI ions with CO 2 ‒ cluster beam, etc.)
Acknowledgments Prof. Mark Johnson Prof. Gary Weddle Chris Johnson Chris Leavitt Andrew DeBlase Arron Wolk Conrad Wolke Olga Garlova
Im(CO 2 ) m – CO 2 Predissociation Yield Photon Energy / cm -1 x3 Im(CO 2 ) 2 – Im(CO 2 ) 3 – Im(CO 2 ) 6 – IHB ν 3 CO 2 – ν 1 CO 2 –
Pred. Yield Calculated Intensity Photon Energy / cm -1 Im(CO 2 ) 2 – Pred. Yield Calculated Intensity Photon Energy / cm -1 Im(CO 2 ) 3 –
Predissociation Yield Photon Energy / cm -1 (CO 2 ) 7 ‾ Im(CO 2 ) 2 vs Py(CO 2 ) 2 – –