BILCW07 - Feb 2007 Global Design Effort 1 RDB S3: Damping Rings R&D Junji Urakawa for Andrzej Wolski (Cockcroft Institute), Susanna Guiducci (INFN-LNF),

Slides:



Advertisements
Similar presentations
LC-ABD2 Work Package 2: Damping Rings Andy Wolski University of Liverpool and the Cockcroft Institute 12 April 2007.
Advertisements

February 7, 2007-Beijing (Zisman-DR) Global Design Effort 1 Damping Ring EDR Plans Michael S. Zisman, Jie Gao, Susanna Guiducci, Andy Wolski DR Area System.
September 28, 2006-Cornell (Zisman/Mattison) Global Design Effort 1 DR Kicker R&D: Goals and Work Scope Michael S. Zisman and Tom Mattison.
Damping ring K. Ohmi LC Layout Single tunnel Circumference 6.7 km Energy 5 GeV 2 km 35 km.
Global Design Effort 1 Summary of Technical and Collaboration Related Issues for the ILC Damping Rings N. Walker (for the Project Managers) INFN Frascati.
SuperB Damping Rings M. Biagini, LNF-INFN P. Raimondi, SLAC/INFN A. Wolski, Cockroft Institute, UK SuperB III Workshop, SLAC, June 2006.
SuperB and the ILC Damping Rings Andy Wolski University of Liverpool/Cockcroft Institute 27 April, 2006.
First approach to the SuperB Rings M. Biagini, LNF-INFN April 26th, 2006 UK SuperB Meeting, Daresbury.
Damping Rings Baseline Lattice Choice ILC DR Technical Baseline Review Frascati, July 7, 2011 Mark Palmer Cornell University.
Overview of ILC Plans D.Rubin April 17, D. Rubin2 ILC R&D Activities and Plans 1.Positron Source 2.Damping Ring 3.Low Emittance Transport - damping.
2011 Damping Rings Lattice Evaluation Mark Palmer Cornell University March 8, 2011.
Towards a Coordinated R&D Plan for ILC Damping Rings Impedance Issues Andy Wolski University of Liverpool and the Cockcroft Institute 28 September, 2006.
ILC Damping Rings R&D Meeting: Cornell, September 2006 Andy Wolski University of Liverpool and the Cockcroft Institute 26 September, 2006.
Plans for injection/extraction R&D S. Guiducci INFN-LNF KEK - ILCDR07, Dec 207.
Report on the Damping Ring Meeting at CERN, Nov , 2005 J. Gao IHEP, Beijing, China Nov. 24, 2005, ILC-Asia Meeting.
March 7, 2007 LET Issues (Cai/Kubo/Zisman) Global Design Effort 1 Low-Emittance Tuning Issues and Plans Yunhai Cai, Kiyoshi Kubo and Michael S. Zisman.
DR Kick-Off Meeting CI, 5 Nov 2007 Global Design Effort 1 Damping Rings Update (after the RDR) Andy Wolski.
Beam dynamics on damping rings and beam-beam interaction Dec 포항 가속기 연구소 김 은 산.
ILC damping ring options and their critical issues 12th July th ACFA MDI/POL/ACC Pohang Accelerator Lab. Eun-San Kim.
Project Management Mark Palmer Cornell Laboratory for Accelerator-Based Sciences and Education.
CesrTA Experimental Plan M. Palmer for the CesrTA Collaboration November 17, 2008.
Electron cloud in the wigglers of ILC Damping Rings L. Wang SLAC ILC Damping Rings R&D Workshop - ILCDR06 September 26-28, 2006 Cornell University.
July 16-17, 2007 Joint NSF/DOE Review of CesrTA Proposal 1 * Mitigation techniques planning still underway with ILC DR group Answer to Questions 1 and.
Damping Ring S. Guiducci AAP Review Tsukuba 20 April 2009.
Damping Ring Parameters and Interface to Sources S. Guiducci BTR, LNF 7 July 2011.
June 13, 2007 Global Design Effort 1 ILC Effort at SLAC RDR > EDR Nan Phinney SLAC/GDE.
E-cloud studies at LNF T. Demma INFN-LNF. Plan of talk Introduction New feedback system to suppress horizontal coupled-bunch instability. Preliminary.
ILC Damping Ring Alternative Lattice Design ( Modified FODO ) ** Yi-Peng Sun *,1,2, Jie Gao 1, Zhi-Yu Guo 2 Wei-Shi Wan 3 1 Institute of High Energy Physics,
Compare options: simulations recent history Cloud density near (r=1mm) beam (m -3 ) before bunch passage, values are taken at a cloud equilibrium density.
Compare options: simulations recent history Cloud density near (r=1mm) beam (m -3 ) before bunch passage, values are taken at a cloud equilibrium density.
ILC DR Workshop - KEK December, A new resonance in wiggler simulations: Christine Celata Use POSINST code.
GDE, 26 Oct 2007, FNAL Global Design Effort 1 Damping Rings Area System Summary Andy Wolski.
Motivation and Overview David Rubin Cornell Laboratory for Accelerator-Based Sciences and Education.
ILCDR'07, 5-7 March, INFN-LNF, Frascati, Italy ILC Damping Rings Technical and Organizational Status Andy Wolski University of Liverpool and the Cockcroft.
Nov 17, 2009 Webex Assessing the 3.2 km Ring feasibility: Simulation parameters for electron cloud Build-up and Instability estimation LC DR Electron Cloud.
Bunch Separation with RF Deflectors D. Rubin,R.Helms Cornell University.
S. Guiducci WG3b - Damping ring size and layout. DR configuration recommendation Circumference and layout ~ 17 km dogbone 3 km or 6 km ring Single rings.
Vacuum System S. Guiducci BTR, LNF 8 July RDR - electron damping ring:
Electron Cloud Issues for the 3.2km Positron Damping Ring Mark Palmer (Cornell University) GDE January 18, 2011 ILC Baseline Assessment Workshop 2 SLAC.
7 November 2006 Valencia Global Design Effort 1 Damping Ring Susanna Guiducci INFN-LNF for Jie Gao (IHEP), Andrzej Wolski (Cockcroft Institute) and Mike.
WebEx meeting November 17, 2009 ILC Damping Ring Working Group on Electron Cloud LC e- cloud Working Group November 17, 2009.
R&D GOALS AND MILESTONES TOWARDS A TECHNICAL DESIGN REPORT TDR (2008) First Intnl. Teleconference Ecloud, Impedance/Instabilities - M. Pivi, SLAC 31 October.
Global Design Effort ILC Damping Rings: R&D Plan and Organisation in the Technical Design Phase Andy Wolski University of Liverpool and the Cockcroft Institute,
1 Experiments with pulse supplies and strip-lines at ATF, Plans for fast extraction kicker for ATF2 1. Fast Kicker R&D at ATF 2. Instrumentation at ATF.
1 Impedance-related and others collective effects Impedance-driven collective effects/Instabilities –Single-Bunch (very high priority) –Multiple-bunch.
ILC Damping Rings: Configuration Status and R&D Plans Andy Wolski Lawrence Berkeley National Laboratory January 19, 2006.
Damping Ring Specifications S. Guiducci ALCPG11, 20 March 2011.
1 R&D Plans for Impedance Driven Single-Bunch Instabilities (WBS 2.2.1) M. Venturini ( presented by M. Zisman) LBNL LCWS07 DESY, Hamburg May 30 - June.
Electron Cloud in the International Linear Collider ILC Mauro Pivi work performed while at SLAC and the ILC Damping Ring Working Group High.
V.Shiltsev 1 Comments on What Kind of Test Facility(ies) the ILC Needs Vladimir Shiltsev/ Fermilab.
1 AS TAG Leaders Meeting Webex - Friday S. Guiducci, M. Palmer.
Coupled bunch Instabilities at ILC Damping Rings L. Wang SLAC ILC Damping Rings R&D Workshop - ILCDR06 September 26-28, 2006 Cornell University Refer to.
1 DR 10 Hz Repetition Rate S. Guiducci (LNF) AD&I webex, 23 June 2010.
DR Kicker R&D: Goals and Work Scope
Electron Cloud and Ion Experimental Program
Status of Fast Ion Instability Studies
Oversea collaborators
Status and Plan of GDE Design Work (Including Road Map for RDR)
Recent Electron Cloud Studies at CESR and Future Plans
Junji Urakawa (KEK) for ATF International Collaboration
Damping Ring Summary S. Guiducci, M. Palmer, M. Pivi, J. Urakawa
Damping Rings Area System Configuration
Junji Urakawa ( for collaborators ) March KEK at LNF
The Proposed Conversion of CESR to an ILC Damping Ring Test Facility
Andy Wolski University of Liverpool and the Cockcroft Institute
CesrTA Experimental Schedule and Priorities
CLIC damping rings working plan towards the CDR
Electron Clouds at SLAC
Status of CTC activities for the Damping rings
R&D GOALS AND MILESTONES TOWARDS A TECHNICAL DESIGN REPORT TDR (2008)
Presentation transcript:

BILCW07 - Feb 2007 Global Design Effort 1 RDB S3: Damping Rings R&D Junji Urakawa for Andrzej Wolski (Cockcroft Institute), Susanna Guiducci (INFN-LNF), Jie Gao (IHEP), Mike Zisman (LBNL) and S3 task members

BILCW07 - Feb 2007 Global Design Effort 2 Damping Rings RDR Configuration Two 6.7 km, 5 GeV damping rings. One electron ring and one positron ring in a shared tunnel around the interaction region. Damping rings area system includes short sections of injection and extraction line, connecting each ring with the sources (upstream) and the RTML (downstream).

BILCW07 - Feb 2007 Global Design Effort 3 Schematic Layout: e + Ring e - footprint is identical, but beam circulates in opposite direction, and RF cavities are always upstream of the wiggler.

BILCW07 - Feb 2007 Global Design Effort 4 S3 Principal Goal Our principal goal is to develop a coordinated plan for damping rings R&D, leading up to the start of construction of the ILC, that takes full account of: –project needs and priorities; –available (and likely or possible) resources, including the test facilities; –aspirations of participating institutions. The R&D plan must be developed in close consultation with the community, to ensure that it has the necessary support. The large diversity of R&D topics and the extremely wide distribution of very limited resources present significant challenges in developing an effective and realistic R&D plan.

BILCW07 - Feb 2007 Global Design Effort 5 S3 Membership and Responsibilities Eckhard Elsen Jie Gao Susanna Guiducci –Feedback systems Tom Mattison –Kickers Mark Palmer –Normal-conducting magnets –Superconducting magnets –Damping Rings RF –Instrumentation and Diagnostics –Supports and alignment systems –Systems integration Mauro Pivi –Multi-particle dynamics Junji Urakawa –Instrumentation and diagnostics Marco Venturini –Multi-particle dynamics Andy Wolski –Vacuum Mike Zisman –Single-particle dynamics –Vacuum –Supports and alignment systems –Systems integration

BILCW07 - Feb 2007 Global Design Effort 6 S3 Progress Convened membership, and identified areas of responsibility. Reviewed full list of R&D objectives, including setting priorities. Compiled data on R&D resources. Organised Damping Rings R&D Meeting at Cornell in September 2006, which provided important input for Very High Priority topics in the R&D plan. –Fast injection/extraction kickers. –Electron cloud suppression. –Impedance and impedance-driven instabilities. Initiated "sub-topic" phone meetings to coordinate R&D in very high priority areas across institutions.

BILCW07 - Feb 2007 Global Design Effort 7 S3 Progress (continued) Agreed a template for R&D Plan Work Packages. Prepared initial drafts of three Work Packages: –Fast injection/extraction kickers. –Electron cloud suppression. –Impedance and impedance-driven instabilities. Agreed date and focus topics for next R&D Meeting. –Frascati, 5-7 March –The meeting will focus on Very High Priority topics not covered at Cornell: Lattice design. Low-emittance tuning. Ion effects. –The meeting will provide invaluable input for the parts of the R&D plan covering these topics.

BILCW07 - Feb 2007 Global Design Effort 8 The RDB S3 group has reviewed 76 R&D objectives for the damping rings, and identified 11 as "Very High Priority". These fall into the categories of: –injection/extraction kickers; –electron cloud effects; –impedance and impedance-driven instabilities; –lattice design (for good dynamic aperture, etc.); –tuning and maintaining low vertical emittance; –ion effects. Development of a detailed R&D plan is in progress, detailing objectives, resources, milestones and timescales. –So far, draft work packages have been produced for the fast injection/extraction kickers; electron cloud studies; studies of impedance and impedance-driven instabilities. The R&D program at present test facilities (notably, KEK-ATF) could be strengthened by future test facilities (e.g. CESR-ta and HERA-DR). With over 25 institutions and 150 people interested or already involved, coordination of R&D efforts is a significant issue. Damping Rings R&D Issues Cornell R&D Meeting, September 2006 Frascati R&D Meeting, March 2007

BILCW07 - Feb 2007 Global Design Effort 9 R&D Meeting at Cornell, 26-28/9/2006 The meeting focused on three “Very High Priority” topics: –Injection/extraction kickers. –Electron cloud. –Impedance and impedance-driven instabilities. There was a special session devoted to discussion of the proposed test facilities: –CESR-TA. –HERA-DR. –damping ring studies at KEKB. 46 participants attended the meeting. All talks are posted on the Damping Rings wiki page: – The three summary talks gave a “first pass” on coordinated R&D plan work packages, including milestones, resources, personnel etc.

BILCW07 - Feb 2007 Global Design Effort 10 Kicker Specifications The kickers will consist of strip-lines fed by ultra-fast, high-voltage pulsers. The integrated voltage required is determined by the acceptance specification: where V is the voltage between the strip-lines, L is the strip-line length, k is a geometry factor (~ 0.7) determined by the strip-line shape, A max (~ 0.09 m for injected positrons) is the maximum betatron amplitude, E is the beam energy and  is the relativistic factor. Integrated voltage> 132 kV-m Rise and fall times< 3 ns Repetition rate5.5 MHz Pulse length970 µs Stability< 0.1%

BILCW07 - Feb 2007 Global Design Effort 11 Kicker Systems The length of each strip-line is limited by the rise and fall time specifications: the maximum length is approximately 30 cm. Each strip-line is driven by two pulsers operating at ±10 kV, providing a voltage between the electrodes of 20 kV. A "complete" kicker is made up of 22 such units. +10 kV -10 kV 30 cm

BILCW07 - Feb 2007 Global Design Effort 12 Kicker Systems There is a continuing R&D program to develop a pulser that meets the specifications for amplitude, rise and fall time, repetition rate, and stability. Several technologies look promising, including: –fast ionization dynistor (FID); –drift step recovery diode (DSRD); –"inductive adder" (MOSFET). There is a commercial FID device available that comes close to meeting the specifications. –A prototype with modified architecture, which could meet most of the ILC specifications, is in development; a version for bench testing is expected by the end of April Modification of ATF extraction system to allow fast extraction of individual bunches from a train is planned for late 2007.

BILCW07 - Feb 2007 Global Design Effort 13 Tests of FID Pulser at Low Amplitude in ATF

BILCW07 - Feb 2007 Global Design Effort 14 Future Kicker Tests at ATF New septum and a "slow" orbit bump would allow fast extraction using two 30 cm strip lines, driven by ±10 kV pulsers.

BILCW07 - Feb 2007 Global Design Effort 15 Electron Cloud Electron cloud could drive instabilities in the positron beam, if allowed to develop to a sufficiently high level. The goal is to reduce the peak secondary electron yield (SEY) to below 1.2 in straights, bends and wigglers. –Benchmarked simulations indicate this will be sufficient to prevent the electron cloud reaching a density that would make the beam unstable. Several techniques are under investigation for suppressing the electron cloud build-up: –Solenoid windings in straights (demonstrated at the B factories). –Coating with low-SEY material, e.g. TiN or TiZrV (NEG): shown to be effective in lab studies, machine experience is needed. –Use of grooved chambers: shown to be effective in lab studies, machine experience is needed. –Clearing electrodes: simulation results look promising, experimental studies are needed.

BILCW07 - Feb 2007 Global Design Effort 16 Electron Cloud A draft of a detailed R&D plan has been prepared, specifying goals and milestones for a range of activities, including: –Improved modelling of electron cloud build-up. –Improved modelling of beam instabilities driven by electron cloud. –Continued laboratory investigations of a range of mitigation techniques. –Tests of mitigation techniques in operating machines. The R&D plan takes account of resources that are, or are likely to be, available. The present draft is still being discussed by S3: a public version should be available soon. Many R&D activities are already in progress…

BILCW07 - Feb 2007 Global Design Effort 17 Electron Cloud: Tests in PEP-II LER Position of sample Stripe of synchrotron radiation Port with holes for electron cloud collector

BILCW07 - Feb 2007 Global Design Effort 18 Electron Cloud: Tests in PEP-II LER Extruded aluminum beam pipe with "fins" and coating.

BILCW07 - Feb 2007 Global Design Effort 19 Impedance-Driven Instabilities Demanding specifications on extracted beam stability lead to concerns over the impedance of the vacuum chamber. Growth times for resistive-wall instability of the order of 20 turns are expected. –Growth times are within the range of modern digital bunch-by-bunch feedback systems. –Large chamber apertures and good conductivity (aluminum) are desirable. –Higher-order modes in cavities must be well damped. Vacuum chamber must be carefully designed and fabricated for low impedance, to allow reasonable margin for operating below single-bunch instabilities.

BILCW07 - Feb 2007 Global Design Effort 20 Impedance: Outline from ILCDR06 (Cornell) 1.Produce initial technical designs for: (a) vacuum system (~ 2 years for ~ 2 FTEs), and (b) RF cavities (> 2 years). 2.Produce preliminary impedance model based on general specifications and scaling from existing machines/designs. (~ 1 year time frame for 1 FTE). 3.Make preliminary estimates of thresholds, growth rates, HOM heating etc. based on preliminary impedance model. (~ 1 year time frame). 4.Construct detailed impedance model based on initial technical designs for vacuum system and RF cavities. (as information from milestone 1 becomes available; ~ 1 year). 4½. Specify feedback system model. 5.Characterize the impedance-related collective effects. (follows 4; ~ months). 6.Specify revised design parameters, and produce optimized technical designs (low risk and cost) for vacuum system and RF cavities. (following TDR). 7.Produce revised impedance model and updated characterization of impedance-related collective effects. (following TDR). 8.Prototyping and testing (in parallel with 6 and 7).

BILCW07 - Feb 2007 Global Design Effort 21 Other Very High Priority R&D Items Lattice design. The present lattice is satisfactory for the RDR but can be improved: –Change in circumference to optimise timing scheme. –Improve the dynamic aperture. –Reduce the sensitivity to alignment errors. –Reduce the number of magnets to reduce the cost. –Reduce the momentum compaction factor (or design a tunable lattice) to reduce RF costs. Low emittance tuning. Requires investigation of different techniques and experimental studies to demonstrate < 2 pm vertical emittance. Fast ion instability. Requires experimental studies (being planned for ATF this year) to collect data for benchmarking modelling codes. A good understanding of this effect is needed to specify vacuum system, feedback system, and safe operating conditions.

BILCW07 - Feb 2007 Global Design Effort 22 Who's Planning What? (An incomplete list…) ANLCICornellDESYFNALIHEPKEKLBNLLNFSLAC kickers  e-cloud  impedance  lattice design  low-  y  ions  vacuum  acceptance  RF system  RF controls  align/support  mech.integration  instrumentation  feedback system  wiggler  main magnets 

BILCW07 - Feb 2007 Global Design Effort 23 Future Test Facilities There are possibilities for several test facilities that could play an important role in damping rings R&D: –KEK-ATF: in operation for several years. Has already made many important contributions: low-emittance tuning, development of instrumentation and diagnostics, test of fast kickers, fast ion instability studies… –PEP-II: now being used for electron cloud studies. –KEKB: planned R&D program for the damping rings, including electron cloud studies. –CESR-TA: proposed test facility. Could study a range of beam dynamics issues in wiggler-dominated regime, including low- emittance tuning, electron cloud… –HERA-DR: 6 km ring that could eventually be developed into one of the ILC damping rings. The developing R&D plan must take full account of the possibilities afforded by these facilities to address critical issues.

BILCW07 - Feb 2007 Global Design Effort 24 Resources Nearly 40 FTEs and $1100k M&S on damping rings R&D in To meet laboratories' desires in 2008, we would need roughly a factor of 2 increase in FTEs, and a factor of 4 increase in M&S. Laboratories' desires provide guidance in developing R&D plan; but represent proposals that have not been effectively coordinated. Final version of R&D plan will estimate the level of resources required to achieve the specified goals and milestones, with proper coordination of activities.

BILCW07 - Feb 2007 Global Design Effort 25 Future Goals of S3 Continue the telephone meetings to coordinate activities on specific R&D topics. Organise the next Damping Rings R&D Meeting. –The meeting will be held at Frascati, 5-7 March –The meeting will focus on three very high priority topics: Lattice design and dynamic aperture. Low-emittance tuning. Ion effects. –The meeting will provide essential input for the developing R&D plan. Complete a draft of the coordinated R&D Plan. –Database information needs to be updated. –We hope to complete the first draft of the R&D plan, consisting of those Work Packages that include Very High Priority R&D Objectives, in the next two or three months. –How do we ensure consistency with the new organization being discussed by the GDE Executive Committee?

BILCW07 - Feb 2007 Global Design Effort 26 Contributors ANL ASTeC CERN Cockcroft Inst. Cornell DESY Efremov Inst. FID FNAL IHEP KEK KNU LANL LBNL LLNL LNF UBC U. Maryland U. Minnesota SLAC U. Illinois UC YerPhI

BILCW07 - Feb 2007 Global Design Effort 27 R&D Points for EDR (from my view points) First, we have to select the lattice design which satisfies many constraints, especially dynamic aperture of positron DR and  function at beam injection/extraction to make enough kick angle. Consider the BPM one-pass resolution (3  m (r.m.s.)) to make 2pm-rad vertical emittance beam. Consider the impedance and electron cloud issues to make the stable flat multi-bunch beam. Super Conducting 650MHz RF system to make 9mm bunch length beam and Super Conducting Wiggler system to make small damping time (20msec). Confirm beam quality by a lot of beam simulation.

BILCW07 - Feb 2007 Global Design Effort 28 Wiggler Design Baseline design based on Cornell SC wiggler (Urban) –permits high field with large aperture alternative designs still being examined (PM or resistive) –vacuum chamber concept to handle heat load and provide adequate pumping developed (Marks, Plate) Material: welded Al, NEG coated P CO = 0.7 nTorr Power density: 3 W/mm 2 Power: 26 kW/wiggler (13 kW each absorber)