CBM Simulation & Analysis Framework Cbmroot

Slides:



Advertisements
Similar presentations
Using the SQL Access Advisor
Advertisements

TWO STEP EQUATIONS 1. SOLVE FOR X 2. DO THE ADDITION STEP FIRST
Maria Grazia Pia, INFN Genova 1 Part IV Geant4 results.
1 Copyright © 2010, Elsevier Inc. All rights Reserved Fig 2.1 Chapter 2.
By D. Fisher Geometric Transformations. Reflection, Rotation, or Translation 1.
Business Transaction Management Software for Application Coordination 1 Business Processes and Coordination.
17 Copyright © 2005, Oracle. All rights reserved. Deploying Applications by Using Java Web Start.
Jeopardy Q 1 Q 6 Q 11 Q 16 Q 21 Q 2 Q 7 Q 12 Q 17 Q 22 Q 3 Q 8 Q 13
Jeopardy Q 1 Q 6 Q 11 Q 16 Q 21 Q 2 Q 7 Q 12 Q 17 Q 22 Q 3 Q 8 Q 13
0 - 0.
DIVIDING INTEGERS 1. IF THE SIGNS ARE THE SAME THE ANSWER IS POSITIVE 2. IF THE SIGNS ARE DIFFERENT THE ANSWER IS NEGATIVE.
SUBTRACTING INTEGERS 1. CHANGE THE SUBTRACTION SIGN TO ADDITION
MULT. INTEGERS 1. IF THE SIGNS ARE THE SAME THE ANSWER IS POSITIVE 2. IF THE SIGNS ARE DIFFERENT THE ANSWER IS NEGATIVE.
Addition Facts
Making the System Operational
Around the World AdditionSubtraction MultiplicationDivision AdditionSubtraction MultiplicationDivision.
ZMQS ZMQS
Geant 4 simulation of the DEPFET beam test Daniel Scheirich, Peter Kodyš, Zdeněk Doležal, Pavel Řezníček Faculty of Mathematics and Physics Charles University,
ABC Technology Project
Xilinx 6.3 Tutorial Integrated Software Environment (ISE) Set up basic environment Select Gates or Modules to Be simulated (Insert Program Code) Run Waveform.
INTRODUCTION TO SIMULATION WITH OMNET++ José Daniel García Sánchez ARCOS Group – University Carlos III of Madrid.
Progam.-(6)* Write a program to Display series of Leaner, Even and odd using by LOOP command and Direct Offset address. Design by : sir Masood.
Squares and Square Root WALK. Solve each problem REVIEW:
CONTROL VISION Set-up. Step 1 Step 2 Step 3 Step 5 Step 4.
Addition 1’s to 20.
25 seconds left…...
Test B, 100 Subtraction Facts
Week 1.
Chapter 10: The Traditional Approach to Design
Systems Analysis and Design in a Changing World, Fifth Edition
We will resume in: 25 Minutes.
1 Unit 1 Kinematics Chapter 1 Day
Chapter 30 Induction and Inductance In this chapter we will study the following topics: -Faraday’s law of induction -Lenz’s rule -Electric field induced.
Status of software development for MPD Oleg Rogachevsky for MPD collaboration Round Table discussion III 5 November 2008 Dubna.
D 0  K -,  + reconstruction with CBM STS detector I.Vassiliev (GSI) CBM collaboration meeting 06-Oct-04 Simulation tools (cbmroot) & geometry Signal.
CBM Software Meeting 1 CBM Simulation & Analysis Framework M. Al-Turany, D. Bertini.
THE SIMULATION- AND ANALYSIS-FRAMEWORK FAIRROOT CHEP 2012, New York.
CBM Simulation&Analysis Framework Cbmroot Mohammad Al-Turany & Denis Bertini.
IFluka : a C++ interface between Fairroot and Fluka Motivations Design The CBM case: –Geometry implementation –Settings for radiation studies –Global diagnosis.
Radiation levels in CBM Radiation effects iFluka (Fluka C++ interface to CbmRoot) Fluka Geometry Models Results Conclusion.
IFluka : a C++ interface between Fairroot and Fluka Motivations Design The CBM case: –Geometry implementation –Settings for radiation studies –Global diagnosis.
FAIR Simulation & Analysis Framework FairRoot M. Al-Turany, D. Bertini, F. Uhlig GSI-IT.
FAIR Simulation & Analysis Framework FairRoot Mohammad Al-Turany (IT-GSI) Denis Bertini (IT-GSI) Florian Uhlig (IT-GSI)
CBM Software week- M. Al-Turany 1 CBM Simulation & Analysis Framework Simulation Part M. Al-Turany, D. Bertini.
CBM Software Workshop for Future Challenges in Tracking and Trigger Concepts, GSI, 9 June 2010 Volker Friese.
Andreas Morsch, CERN EP/AIP CHEP 2003 Simulation in ALICE Andreas Morsch For the ALICE Offline Project 2003 Conference for Computing in High Energy and.
Experience With CBM Muon Simulation Partha Pratim Bhaduri.
FLUKA dose and fluence simulations for CBM experiment I.Kadenko, O.Bezshyyko, V.Pluyko, V.Shevchenko National Taras Shevchenko University of Kiev.
Simulations for CBM CBM-India Meeting, Jammu, 12 February 2008 V. Friese
Geant4 in production: status and developments John Apostolakis (CERN) Makoto Asai (SLAC) for the Geant4 collaboration.
CBM Simulation&Analysis Framework Cbmroot Mohammad Al-Turany Denis Bertini Ilse König.
The CMS Simulation Software Julia Yarba, Fermilab on behalf of CMS Collaboration 22 m long, 15 m in diameter Over a million geometrical volumes Many complex.
Dmitri Ossetski Obninsk State University Department of Applied Mathematics
CBM Software Meeting 1 CBM Simulation & Analysis Framework Geant3 / Gean4 configuration M. Al-Turany, D. Bertini.
CBM ECAL simulation status Prokudin Mikhail ITEP.
SoLID simulation with GEMC Zhiwen Zhao 2015/03/26.
Towards comparisons between TFluka and TGeant3 ( within CbmRoot Framework) Denis Bertini (IT-GSI) Antonin Maire (IPHC Strasbourg)
ROOT Data bases access1 LCG Data base deployment workshop 11 October Ren é Brun CERN.
CBM Simulation Walter F.J. Müller, GSI CBM Simulation Week, May 10-14, 2004 Tasks and Concepts.
STAR Simulation. Status and plans V. Perevoztchikov Brookhaven National Laboratory,USA.
ROOT Geometry PackageL1 The New ROOT Geometry Package ACAT2002 Moscow 24 June Ren é Brun, Andrei & Mihaela Gheata CERN.
The HADES Oracle database and its interfaces for experimentalists Ilse Koenig, GSI Darmstadt for the HADES collaboration.
FAIRROOT SIMULATION Panda Computing Week 2012, Torino.
Status of PSD simulation in Shine Oleg Petukhov Institute for Nuclear Research, Moscow NA61 Analysis/Software/Calibration meeting , Warsaw.
HYDRA Framework. Setup of software environment Setup of software environment Using the documentation Using the documentation How to compile a program.
Monthly video-conference, 18/12/2003 P.Hristov1 Preparation for physics data challenge'04 P.Hristov Alice monthly off-line video-conference December 18,
FAIR Simulation&Analysis Framework FairRoot
Bonn Test Station data analysis with PandaRoot
(CMS GEANT4 simulation)
Use of Geant4 in experiment interactive frameworks AliRoot
Presentation transcript:

CBM Simulation & Analysis Framework Cbmroot Mohammad Al-Turany Denis Bertini Ilse König

CBM Framework: Features The same framework can be used for Simulation and Analysis Fully ROOT based: VMC for simulation Geometry Modeller (TGeoManager) : Overlaps checking, visualization and/or navigation system of G3 IO scheme (TChain, friend TTrees, TFolders ) for persistency TTask to organize analysis data flow Completely configurable via ROOT macros Easy to maintain (only ROOT standard services are used) Reuse of HADES Geometry Interface. Reuse of HADES Parameter containers. Event merging before and/or after transport 10.03.2005 CBM Collaboration Meeting

CBM Collaboration Meeting CBM Simulation (Old) ROOT Geant3 Geometry Manager Virtual MC Geant4 Root files MCPoints, Configuration Magnet FLUKA Target IO Manager GeoInterface Run Manager PIPE Primary Generator Cave Module STS Magnetic Field Detector Tasks Urqmd EVGEN TRD Pluto TOF Particle Generator RICH Delta Tracking Field Map ASCII ECAL digitizers 10.03.2005 CBM Collaboration Meeting

Configuration, Parameters, CBM Simulation ROOT Geant3 Root files MCPoints Geometry Manager Virtual MC Magnet Geant4 Target FLUKA PIPE Oracle Configuration, Parameters, Geometry GeoInterface Run Manager IO Manager Cave RunTime DataBase Module Primary Generator STS Root files Configuration, Parameters, Geometry TRD Magnetic Field Detector Tasks EVGEN TOF RICH Field Map Particle Generator ECAL ASCII Urqmd Pluto 10.03.2005 CBM Collaboration Meeting

CBM Collaboration Meeting CBM Analysis (Old) ROOT ROOT FILES Input: MC Points, Configuration Output: Hits, Digits, Tracks Geometry Manager Virtual MC IO Manager GeoInterface Run Manager Primary Generator Module Magnetic Field Detector Tasks EVGEN Delta Tracking digitizers 10.03.2005 CBM Collaboration Meeting

Configuration, Parameters, CBM Analysis Root files MCPoints, Hits, Digits, Tracks IO Manager GeoInterface Run Manager Oracle Configuration, Parameters, Geometry RunTime DataBase Module Primary Generator Magnetic Field Detector Tasks EVGEN Root files Configuration, Parameters, Geometry Delta digitizers Tracking 10.03.2005 CBM Collaboration Meeting

CBM Geometry Interface Use the copy mechanism reduce the size of ASCII files Reduce the number of Volumes in Geant Improve Geant tracking performance Oracle interface Hades geometry table design reusable Advantage: more flexibility : different inputs can be used. closer to technical drawings and analysis coordinate systems 10.03.2005 CBM Collaboration Meeting

Material & Geometry Interface Oracle DB TGeo Geometry/Material TGeoVolume TGeoNode TGeoMaterial CbmGeoInterface ASCII G3 Geometry/Material G3Builder RootBuilder 10.03.2005 CBM Collaboration Meeting

Simulation Macro – loading Libs // Load basic libraries gROOT->LoadMacro("$VMCWORKDIR/gconfig/basiclibs.C"); basiclibs(); // Load Cbmroot libraries gSystem->Load("libGeoBase"); gSystem->Load("libCbm"); gSystem->Load("libPassive"); gSystem->Load("libGen"); gSystem->Load("libSts"); gSystem->Load("libTrd"); gSystem->Load("libTof"); gSystem->Load("libRich"); ......... 10.03.2005 CBM Collaboration Meeting

CBM Collaboration Meeting Simulation Macro //create the Simulation Run Class CbmRunSim *fRun = new CbmRunSim(); // set the MC version used fRun->SetName("TGeant3"); //for G4 use "TGeant4" fRun->SetGeoModel("G3Native"); //use G3 native geometry // chose an output file name fRun->SetOutputFile("test.root"); 10.03.2005 CBM Collaboration Meeting

Simulation Macro- Create Modules CbmModule *Cave= new CbmCave("WORLD"); Cave->SetGeometryFileName("PASSIVE/CAVE", "v03a"); fRun->AddModule(Cave); CbmModule *Target= new CbmTarget("Target"); Target->SetGeometryFileName("PASSIVE/TARGET", "v03a"); fRun->AddModule(Target); CbmModule *Pipe= new CbmPIPE("PIPE"); Pipe->SetGeometryFileName("PASSIVE/PIPE", "v03a"); fRun->AddModule(Pipe); CbmModule *Magnet= new CbmMagnet("MAGNET"); Magnet->SetGeometryFileName("PASSIVE/MAGNET", "v03a"); fRun->AddModule(Magnet); 10.03.2005 CBM Collaboration Meeting

Simulation Macro- Create Detectors CbmDetector *STS= new CbmSts("STS", kTRUE); STS->SetGeometryFileName("STS/STS", "v03c"); fRun->AddModule(STS); CbmDetector *TOF= new CbmTof("TOF", kTRUE ); TOF->SetGeometryFileName("TOF/TOF", "v03_v10"); fRun->AddModule(TOF); CbmDetector *TRD= new CbmTRD("TRD",kFALSE ); TRD->SetGeometryFileName("TRD/TRD", "v04b_9" ); fRun->AddModule(TRD); 10.03.2005 CBM Collaboration Meeting

Simulation Macro-Event Generators CbmPrimaryGenerator *priGen= new CbmPrimaryGenerator(); fRun->SetGenerator(priGen); CbmUrqmdGenerator *fGen1= new CbmUrqmdGenerator("00-03fm.100ev.f14"); CbmPlutoGenerator *fGen2= new CbmPlutoGenerator("jpsi.root"); CbmParticleGenerator *fGen3= new CbmParticleGenerator(); fRun->AddGenerator(fGen1); fRun->AddGenerator(fGen2); fRun->AddGenerator(fGen3); 10.03.2005 CBM Collaboration Meeting

Simulation Macro-Magnetic Field // setting a field map CbmFieldMap *fMagField= new CbmFieldMap("FIELD.v03b.map"); // setting a constant field CbmConstField *fMagField=new CbmConstField(); fMagField->SetFieldXYZ(0, 30 ,0 ); // values are in kG // MinX=-75, MinY=-40,MinZ=-12 ,MaxX=75, MaxY=40 ,MaxZ=124 ); fMagField->SetFieldRegions(-74, -39 ,-22 , 74, 39 , 160 ); // values are in cm fRun->SetField(fMagField); 10.03.2005 CBM Collaboration Meeting

Simulation Macro- Run Simulation fRun->Init(); // Initialize the simulation Simulation: 1. Initialize the VMC (Simulation) 2. Initialize Tasks (if they are used in Simulation) fRun->Run(NoOfEvent); //Run the Simulation 10.03.2005 CBM Collaboration Meeting

Saving Parameters: ROOT Files //Fill the Parameter containers for this run */ CbmRuntimeDb *rtdb=fRun->GetRuntimeDb(); rtdb->addRun(1); //add run with run Id CbmParRootFileIo* output=new CbmParRootFileIo(); output->open("SimPar.root","RECREATE"); rtdb->setOutput(output); CbmBaseParSet* par=(CbmBaseParSet*)(rtdb->getContainer("CbmBaseParSet")); par->SetField(fMagField); par->SetGen(primGen); par->setChanged(); par->setInputVersion(1,1); rtdb->saveOutput(); 10.03.2005 CBM Collaboration Meeting

Saving Parameters: Oracle gSystem->Load ( "libOra" ); CbmRuntimeDb* rtdb=fRun->GetRuntimeDb(); CbmParOraIo* ora=new CbmParOraIo; ora->open("cbm_sts_oper"); rtdb->setOutput(ora); CbmParTest* par=(CbmParTest*)(rtdb->getContainer("CbmParTest")); par->setAuthor("M. Al-Turany"); par->setDescription("Analysis interface test"); par->write(ora); 10.03.2005 CBM Collaboration Meeting

CBM Collaboration Meeting Analysis Macro { gROOT->LoadMacro("$VMCWORKDIR/gconfig/basiclibs.C"); basiclibs(); gSystem->Load("libCbm"); gSystem->Load("libTrack"); CbmRunAna *fRun= new CbmRunAna(); fRun->SetInputFile(“/d/STS_AuAu25Gev_Urqmd.root"); fRun->SetOutputFile(“trackOutput.root"); 10.03.2005 CBM Collaboration Meeting

Analysis Macro: Reading Parameters CbmTrack *tr= new CbmTrack("Tracking Algorithm"); fRun->AddTask(tr); CbmRuntimeDb* rtdb=fRun->GetRuntimeDb(); CbmParRootFileIo* input=new CbmParRootFileIo(); input->open("test.root"); rtdb->setFirstInput(input); CbmBaseParSet* par = (CbmBaseParSet*)(rtdb->getContainer ("CbmBaseParSet") ); rtdb->initContainers(1); // runId = 1 par->print(); fRun->Init(); fRun->Run(); 10.03.2005 CBM Collaboration Meeting

Reading Parameters: Oracle gSystem->Load ( "libOra" ); CbmRunAna * fRun = new CbmRunAna(); CbmRuntimeDb* rtdb=fRun->GetRuntimeDb(); CbmParOraIo* ora=new CbmParOraIo(); ora->open(); rtdb->setFirstInput(ora); CbmGenericParOraIo* genio= (CbmGenericParOraIo*)(ora->getDetParIo("CbmGenericParIo")); CbmParTest* par=(CbmParTest*)(rtdb->getContainer("CbmParTest")); genio->readFromLoadingTable(par,1); // runId =1 par->print(); par->printParams(); 10.03.2005 CBM Collaboration Meeting

CBM Collaboration Meeting Chaining root files Chaining mechanism supported in the Analysis: { // … CbmRunAna *fRun = new CbmRunAna(); fRun->SetInputFile(“myfile1.root”); fRun->AddFile(“myfile2.root”); fRun->AddFile(“myfile3.root”); // loop over all entries fRun->Run(); } 10.03.2005 CBM Collaboration Meeting

CBM Collaboration Meeting Summary The G3 Native geometry builder is implemented, the validation of the modified G3 is being performed. (TGeo as a navigation system for G3) Inconsistency in the Cerenkov effect has been found and a report has been send to the VMC group. Hades spectrometer has been fully integrated Gives us the opportunity to tune Geant4 (cuts/physics list …) and compare with real Data ! Validate TGeo and G3 with data Realistic test of the framework. HADES Parameter containers are implemented and ready to use The Hades Oracle interface is integrated within the framework 10.03.2005 CBM Collaboration Meeting