10 주 강의 First-order Logic. Limitation of propositional logic A very limited ontology  to need to the representation power  first-order logic.

Slides:



Advertisements
Similar presentations
Knowledge Representation using First-Order Logic
Advertisements

First-Order Logic Chapter 8.
Knowledge Representation using First-Order Logic CS 271: Fall 2007 Instructor: Padhraic Smyth.
March 2, 2006AI: Chapter 8: First-Order Logic1 Artificial Intelligence Chapter 8: First-Order Logic Michael Scherger Department of Computer Science Kent.
Moving on to First-Order Logic Language, Meaning, Logic USEM 40a James Pustejovsky.
First-Order Logic.
Predicate Logic Second Term Fourth Year (10 CS) 1.
Standard Logical Equivalences
First-Order Logic Chapter 8.
SE Last time: Logic and Reasoning Knowledge Base (KB): contains a set of sentences expressed using a knowledge representation language TELL: operator.
Predicate Calculus Russell and Norvig: Chapter 8,9.
Artificial Intelligence Lecture No. 10 Dr. Asad Ali Safi ​ Assistant Professor, Department of Computer Science, COMSATS Institute of Information Technology.
First-Order Logic. Limitations of propositional logic Suppose you want to say “All humans are mortal” –In propositional logic, you would need ~6.7 billion.
Logic. Propositional Logic Logic as a Knowledge Representation Language A Logic is a formal language, with precisely defined syntax and semantics, which.
First-Order Logic Chapter 8.
CS 561, Session Midterm format Date: 10/10/2002 from 11:00am – 12:20 pm Location: THH 101 Credits: 35% of overall grade Approx. 4 problems, several.
First-Order Logic Copyright, 1996 © Dale Carnegie & Associates, Inc. Chapter 8 Spring 2007.
Knowledge Representation using First-Order Logic (Part II) Reading: Chapter 8, First lecture slides read: Second lecture slides read:
CS 561, Session Last time: Logic and Reasoning Knowledge Base (KB): contains a set of sentences expressed using a knowledge representation language.
FIRST-ORDER LOGIC FOL or FOPC
First-Order Logic Chapter 8. Problem of Propositional Logic  Propositional logic has very limited expressive power –E.g., cannot say "pits cause breezes.
Knowledge Representation using First-Order Logic (Part III) This lecture: R&N Chapters 8, 9 Next lecture: Chapter 13; Chapter (Please read lecture.
First-Order Logic Chapter 8. Outline Why FOL? Syntax and semantics of FOL Using FOL Wumpus world in FOL Knowledge engineering in FOL.
Predicate Calculus.
CE An introduction to Artificial Intelligence CE Chapter 8: First Order Logic Ramin Halavati In which we notice that.
Propositional Logic Agenda: Other forms of inference in propositional logic Basics of First Order Logic (FOL) Vision Final Homework now posted on web site.
FIRST ORDER LOGIC Levent Tolga EREN.
1 CS 2710, ISSP 2610 Chapter 8, Part 2 First Order Predicate Calculus FOPC.
First Order Logic Chapter 7. PL is a Weak Representational Language §Propositional Logic (PL) is not a very expressive language because: §Hard to identify.
First Order Predicate Calculus Chapter 7. Propositional logic v. FOPC §Propositional calculus deals only with facts l P : I-love-all-dogs l facts are.
First-Order Logic Semantics Reading: Chapter 8, , FOL Syntax and Semantics read: FOL Knowledge Engineering read: FOL.
1 Last time: Logic and Reasoning Knowledge Base (KB): contains a set of sentences expressed using a knowledge representation language TELL: operator to.
First-Order Logic Chapter 8. Outline Why FOL? Syntax and semantics of FOL Using FOL Wumpus world in FOL Knowledge engineering in FOL.
ARTIFICIAL INTELLIGENCE Lecture 3 Predicate Calculus.
© Copyright 2008 STI INNSBRUCK Intelligent Systems Predicate Logic.
Knowledge Representation using First-Order Logic 부산대학교 전자전기컴퓨터공학과 인공지능연구실 김민호
Limitation of propositional logic  Propositional logic has very limited expressive power –(unlike natural language) –E.g., cannot say "pits cause breezes.
First-Order Logic Chapter 8. Outline Why FOL? Syntax and semantics of FOL Using FOL Wumpus world in FOL Knowledge engineering in FOL.
Agent that reason logically 지식표현. Agent that reason logically2 Knowledge Base A set of representations of facts about the world Knowledge representation.
1 First-Order Logic Propositional logic does not represent and cannot handle objects. First-order logic is to represent and reason on objects and their.
Artificial Intelligence First-Order Logic (FOL). Outline of this Chapter The need for FOL? What is a FOL? Syntax and semantics of FOL Using FOL.
For Wednesday Read chapter 9, sections 1-3 Homework: –Chapter 7, exercises 8 and 9.
Propositional & Predicate Calculus _I
For Friday Read chapter 8 Homework: –Chapter 7, exercises 2 and 10 Program 1, Milestone 2 due.
1 Propositional logic (cont…) 命題論理 Syntax&Semantics of first-order logic 構文論と意味論 Deducing hidden properties Describing actions Propositional logic (cont…)
First-Order Logic Chapter 8 (not 8.1). Outline Why FOL? Why FOL? Syntax and semantics of FOL Syntax and semantics of FOL Using FOL Using FOL Wumpus world.
First-Order Logic. Outline Why FOL? Syntax and semantics of FOL Using FOL Knowledge engineering in FOL.
LOGIC. Logic in general  Logics are formal languages for representing information such that conclusions can be drawn  Syntax defines the sentences in.
First-Order Logic Chapter 8. Outline Why FOL? Syntax and semantics of FOL Using FOL Wumpus world in FOL Knowledge engineering in FOL.
First-Order Logic Reading: C. 8 and C. 9 Pente specifications handed back at end of class.
First-Order Logic Semantics Reading: Chapter 8, , FOL Syntax and Semantics read: FOL Knowledge Engineering read: FOL.
1 First Order Logic CS 171/271 (Chapter 8) Some text and images in these slides were drawn from Russel & Norvig’s published material.
First-Order Logic Chapter 8. Problem of Propositional Logic  Propositional logic has very limited expressive power –E.g., cannot say "pits cause breezes.
1 CS 2710, ISSP 2610 Chapter 8, Part 1 First Order Predicate Calculus FOPC.
논리와 응용 First-order Logic. Limitation of propositional logic A very limited ontology  to need to the representation power  first-order logic.
First-Order Logic Chapter 8.
Knowledge Representation using First-Order Logic
Course Instructor: kinza ch
First Order Logic.
Last time: Logic and Reasoning
First-Order Logic Chapter 8.
Notes 8: Predicate logic and inference
First-Order Logic Chapter 8.
Agent that reason logically
Week #2 – 4/6 September 2002 Prof. Marie desJardins
Chapter 8, Part 1 First Order Predicate Calculus FOPC
First-order Logic Propositional logic (cont…)
논리와 응용 First-order Logic.
First-Order Logic Chapter 8.
First-Order Logic Chapter 8.
Presentation transcript:

10 주 강의 First-order Logic

Limitation of propositional logic A very limited ontology  to need to the representation power  first-order logic

First-order logic A stronger set of ontological commitments A world in FOL consists of objects, properties, relations, functions Objects  people, houses, number, colors, Bill Clinton Relations  brother of, bigger than, owns, love Properties  red, round, bogus, prime Functions  father of, best friend, third inning of

Examples “ One plus two equals three ” – objects :: one, two, three, one plus two – Relation :: equal – Function :: plus “ Squares neighboring the wumpus are smelly –Objects :: wumpus, square –Property :: smelly –Relation :: neighboring

First order logics Objects 와 relations 시간, 사건, 카테고리 등은 고려하지 않음 영역에 따라 자유로운 표현이 가능함  ‘ king ’ 은 사람의 property 도 될 수 있고, 사람과 국가 를 연결하는 relation 이 될 수도 있다 일차술어논리는 잘 알려져 있고, 잘 연구된 수 학적 모형임

Syntax and Semantics Sentence  AtomicSentence | Sentence Connective Sentence | Auantifier Variable,…Sentence |  Sentence | (Sentence) AtomicSentence  Predicate(Term,…) | Term=Term Term  Function (Term,…) | Constant | Variable Connective   |  |  |  Quantifier   |  Constant  A | X 1 | John | … Variable  a | x | s | … Predicate  Before | HanColor | Raining | … Function  Mother | LeftLegOf | … Figure 7.1 The syntax of first-order logic (with equality) in BNF (Backus-Naur Form).

예 Constant symbols :: A, B, John, Predicate symbols :: Round, Brother Function symbols :: Cosine, FatherOf Terms :: King John, Richard ’ s left leg Atomic sentences :: Brother(Richard,John), Married(FatherOf(Richard), MotherOf(John)) Complex sentences :: Older(John,30)=>~younger(John,30)

Quantifiers World = {a, b, c} Universal quantifier ( ∀ ) ∀ x Cat(x) => Mammal(x)  Cat(a) => Mammal(a) & Cat(a) => Mammal(a) Existential quantifier ( ∃ ) ∃ x Sister(x, Sopt) & Cat(x)

Nested quantifiers ∀ x,y Parent(x,y) => Child(y,x) ∀ x,y Brother(x,y) => Sibling(y,x) ∀ x ∃ y Loves(x,y) ∃ y ∀ x Loves(x,y)

De Morgan ’ s Rule ∀ x ~P  ~ ∃ x P ~P&~Q  ~(P v Q) ~ ∀ x P  ∃ x ~P ~(P&Q)  ~P v ~Q ∀ x P  ~ ∃ x ~P P&Q  ~(~P v ~ Q) ∃ x P  ~ ∀ x ~P P v Q  ~(~P&~Q)

Equality Identity relation Father(John) = Henry ∃ x,y Sister(Spot,x) & Sister(Spot,y) & ~(x=y) ≠ ∃ x,y Sister(Spot,x) & Sister(Spot,y)

Higher-order logic ∀ x,y (x=y)  ( ∀ p p(x)  p(y)) ∀ f,g (f=g)  ( ∀ x f(x)  g(x)) ∀

-expression x,y x 2 – y 2 -expression can be applied to arguments to yield a logical term in the same way that a function can be ( x,y x 2 – y 2 )(25,24) = = 49 x,y Gender(x) ≠Gender(y) & Address(x) = Address(y)

∃ ! (The uniqueness quantifier) ∃ !x King(x) ∃ x King(x) & ∀ y King(y) => x=y world 를 고려하여 보여주면 => object 가 1, 2, 3 개일 때 {a} w0  king={}, w1  king={a}  w1 만 model {a,b} w0  king={}, w1  king={a}, w2  {b}, w3  {a,b}  w1, w2 만 model

Representation of sentences by FOPL One ’ s mother is one ’ s female parent ∀ m,c Mother(c)=m  Female(m) & Parent(m) One ’ s husband is one ’ s male spouse ∀ w,h Husband(h,w)  Male(h) & Spouse(h,w) Male and female are disjoint categories ∀ x Male(x)  ~Female(x) A grandparent is a parent of one ’ s parent ∀ g,c Grandparent(g,c)  ∃ p parent(g,p) & parent(p,g)

Representation of sentences by FOPL A sibling is another child of one ’ s parents ∀ x,y Sibling(x,y)  x≠y & ∃ p Parent(p,x) & Parent(p,y) Symmetric relations ∀ x,y Sibling(x,y)  Sibling(y,x)

The domain of sets (I) The only sets are the empty set and those made by adjoining something to a set : ∀ s Set(s)  (s=EmptySet) v ( ∃ x,s2 Set(s2) & s=Adjoin(x,s2)) The empty set has no elements adjoined into it. ~ ∃ x,s Adjoin(x,s)=EmptySet Adjoining an element already in the set has no effect ∀ x,s Member(x,s)  s=Adjoin(x,s) The only members of a set are the elements that were adjoined into it ∀ x,s Member(x,s)  ∃ y,s2 (s=Adjoin(y,s2) & (x=y v Member(x,s)))

The domain of sets (II) A set is a subset of another if and only if all of the first set ’ s are members of the second set : ∀ s1,s2 Subset(s1,s2)  ( ∀ x Member(x,s1) => member(x,s2)) Two sets are equal if and only if each is a subset of the other: ∀ s1,s2 (s1=s2)  (Subset(s1,s2) & Subset(s2,s1))

The domain of sets (III) An object is a member of the intersection of two sets if and only if it is a member of each of sets : ∀ x,s1,s2 Member(x,Intersection(s1,s2))  Member(x,s1) & Member(x,s2) An object is a member of the union of two sets if and only if it is a member of either set : ∀ x,s1,s2 Member(x,Union(s1,s2))  Member(x,s1) v Member(x,s2)

Asking questions and getting answers Tell(KB, ( ∀ m,c Mother(c)=m  Female(m) & Parent(m,c)) ) …… Tell(KB, (Female(Maxi) & Parent(Maxi,Spot) & Parent(Spot,Boots))) Ask(KB,Grandparent(Maxi,Boots) Ask(KB, ∃ x Child(x, Spot)) Ask(KB, ∃ x Mother(x)=Maxi) Substitution, unification, {x/Boots}